Last active
November 14, 2024 20:47
-
-
Save cloneofsimo/fb5b0a5d9dea82c8d8468609204ef8ee to your computer and use it in GitHub Desktop.
Orthogonal weight update
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
https://x.com/jxbz/status/1857145985480438073 | |
import torch | |
def polar_factor_newton_schulz(M, max_iter=50): | |
M_t = M / M.norm(p='fro') | |
for _ in range(max_iter): | |
M_t = 1.5 * M_t - 0.5 * M_t @ M_t.T @ M_t | |
return M_t | |
def stiefel_update(W, G, eta, max_iter=10): | |
M = W.T @ G - G.T @ W | |
scaling = torch.sqrt(torch.tensor(1 + eta**2)) | |
M_hat = polar_factor_newton_schulz(M, max_iter=max_iter) | |
W_new = W @ (torch.eye(W.shape[1]) - eta * M_hat) / scaling | |
return W_new | |
m, n = 50, 30 | |
seed = 11 | |
W = torch.randn(m, n, generator=torch.Generator().manual_seed(seed)) | |
W, _ = torch.qr(W) | |
low_rank_ratio = 0.01 # make this to 0 to see weird effects | |
gen = torch.Generator().manual_seed(seed + 1) | |
G = torch.randn((m, 4), generator=gen) @ torch.randn((4, n), generator=gen) + torch.randn((m, n), generator=gen) * low_rank_ratio | |
W_init = W.clone() | |
datas = [] | |
for update_iters in [1, 2, 4, 8, 16, 32, 64]: | |
for max_iter in [1, 2, 3, 4, 5, 6, 8, 14, 20, 30, 40, 50]: | |
W = W_init.clone() | |
for _ in range(update_iters): | |
eta = 1/8 | |
W = stiefel_update(W, G, eta, max_iter=max_iter) | |
I_approx = W.T @ W | |
print(f"Error for max_iter={max_iter}, update_iters={update_iters}: {torch.norm(I_approx - torch.eye(n))}") | |
datas.append((max_iter, torch.norm(I_approx - torch.eye(n)), update_iters)) | |
import pandas as pd | |
df = pd.DataFrame(datas, columns=["max_iter", "error", "update_iters"]) | |
df.to_csv("stiefel_update_error.csv", index=False) | |
import matplotlib.pyplot as plt | |
for update_iters in [1, 2, 4, 8, 16, 32, 64]: | |
df_sub = df[df["update_iters"] == update_iters] | |
plt.plot(df_sub["max_iter"], df_sub["error"], label=f"update_iters={update_iters}") | |
plt.xlabel("max_iter") | |
plt.ylabel("error") | |
plt.yscale("log") | |
plt.legend() | |
plt.savefig("stiefel_update_error.png") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
without low rank (ratioo = 0.1)
with low rank (ratio = 0.0