Last active
December 14, 2015 06:19
-
-
Save cmd-ntrf/5041944 to your computer and use it in GitHub Desktop.
Prototype for a DataLogger object based on pandas DataFrame for the DEAP framework.
This object would take care of statistics computation and bookeeping along the evolution.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
from pandas import DataFrame, concat | |
from sys import stdout | |
from numpy import random | |
from matplotlib import pyplot as plt | |
class DataLogger(object): | |
def __init__(self, key=None): | |
self.key = key | |
self.data = [] | |
self.table = None | |
self.header = True | |
def update(self, seq, **kargs): | |
if self.key is not None: | |
seq = map(self.key, seq) | |
stats = DataFrame(seq).describe() | |
stats = stats.drop('count').T | |
for i, (name, value) in enumerate(kargs.items()): | |
stats.insert(i, name, (value,) * len(stats)) | |
self.data.append(stats) | |
self.table = concat(self.data, keys=range(len(self.data)), names=['gen', 'obj']) | |
self.ndim = len(stats) | |
def log(self): | |
tail = self.table.tail(self.ndim) | |
string = tail.to_string().split("\n") | |
if self.header: | |
print "\n".join(string[0:2]) | |
self.header = False | |
print "\n".join(string[2:]) | |
if __name__ == "__main__": | |
logger = DataLogger() | |
NGEN = 10 | |
SIZE = 20 | |
for i in range(NGEN): | |
fits = random.randn(SIZE, 2) | |
logger.update(fits, eval=len(fits)) | |
logger.log() | |
# We group the results by objective number: | |
grouped = logger.table.groupby(level=1) | |
# Then we can simply plot the data | |
mean_obj1 = grouped.get_group(0)['mean'][:, 0] | |
mean_obj1.plot() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment