Created
November 30, 2017 20:58
-
-
Save cmiles74/75fcd0aa141217d4e434b72ddf192e42 to your computer and use it in GitHub Desktop.
An Index That Does Something
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
select FACULTY.FirstName, FACULTY.LastName, STUDENT.FirstName, STUDENT.LastName | |
from FACULTY, STUDENT | |
where FACULTY.FacultyID = STUDENT.AcademicAdvisorID and FACULTY.LastName = 'Leto'; | |
---- | |
Plan hash value: 1096367573 | |
---------------------------------------------------------------------------------------- | |
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | | |
---------------------------------------------------------------------------------------- | |
| 0 | SELECT STATEMENT | | 1 | 74 | 3 (0)| 00:00:01 | | |
| 1 | NESTED LOOPS | | 1 | 74 | 3 (0)| 00:00:01 | | |
| 2 | NESTED LOOPS | | 5 | 74 | 3 (0)| 00:00:01 | | |
| 3 | TABLE ACCESS FULL | STUDENT | 5 | 185 | 3 (0)| 00:00:01 | | |
|* 4 | INDEX UNIQUE SCAN | FAC_PK | 1 | | 0 (0)| 00:00:01 | | |
|* 5 | TABLE ACCESS BY INDEX ROWID| FACULTY | 1 | 37 | 0 (0)| 00:00:01 | | |
---------------------------------------------------------------------------------------- | |
Predicate Information (identified by operation id): | |
--------------------------------------------------- | |
4 - access("FACULTY"."FACULTYID"="STUDENT"."ACADEMICADVISORID") | |
5 - filter("FACULTY"."LASTNAME"='Leto') | |
Note | |
----- | |
- dynamic statistics used: dynamic sampling (level=2) | |
---- | |
create index last_name on FACULTY(LastName); | |
select FACULTY.FirstName, FACULTY.LastName, STUDENT.FirstName, STUDENT.LastName | |
from FACULTY, STUDENT | |
where FACULTY.FacultyID = STUDENT.AcademicAdvisorID and FACULTY.LastName = 'Leto'; | |
---- | |
Plan hash value: 1605570460 | |
--------------------------------------------------------------------------------------------------- | |
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | | |
--------------------------------------------------------------------------------------------------- | |
| 0 | SELECT STATEMENT | | 1 | 74 | 3 (0)| 00:00:01 | | |
| 1 | NESTED LOOPS | | 1 | 74 | 3 (0)| 00:00:01 | | |
| 2 | NESTED LOOPS | | 1 | 74 | 3 (0)| 00:00:01 | | |
| 3 | TABLE ACCESS BY INDEX ROWID BATCHED| FACULTY | 1 | 37 | 2 (0)| 00:00:01 | | |
|* 4 | INDEX RANGE SCAN | LAST_NAME | 1 | | 1 (0)| 00:00:01 | | |
|* 5 | INDEX RANGE SCAN | ADVISOR_I | 1 | | 0 (0)| 00:00:01 | | |
| 6 | TABLE ACCESS BY INDEX ROWID | STUDENT | 1 | 37 | 1 (0)| 00:00:01 | | |
--------------------------------------------------------------------------------------------------- | |
Predicate Information (identified by operation id): | |
--------------------------------------------------- | |
4 - access("FACULTY"."LASTNAME"='Leto') | |
5 - access("FACULTY"."FACULTYID"="STUDENT"."ACADEMICADVISORID") | |
Note | |
----- | |
- dynamic statistics used: dynamic sampling (level=2) | |
- this is an adaptive plan |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment