Created
April 19, 2023 17:04
-
-
Save cmsj/2d6b247ad4fc8f15011105feeda763e7 to your computer and use it in GitHub Desktop.
Quick hack to run SLM locally
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# pip install the following, and make sure you have a pytorch that supports CUDA. | |
# accelerate | |
# bitsandbytes | |
# transformers | |
# IPython | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from IPython.display import Markdown, display | |
def hr(): display(Markdown('---')) | |
def cprint(msg: str, color: str = "blue", **kwargs) -> str: | |
if color == "blue": print("\033[34m" + msg + "\033[0m", **kwargs) | |
elif color == "red": print("\033[31m" + msg + "\033[0m", **kwargs) | |
elif color == "green": print("\033[32m" + msg + "\033[0m", **kwargs) | |
elif color == "yellow": print("\033[33m" + msg + "\033[0m", **kwargs) | |
elif color == "purple": print("\033[35m" + msg + "\033[0m", **kwargs) | |
elif color == "cyan": print("\033[36m" + msg + "\033[0m", **kwargs) | |
else: raise ValueError(f"Invalid info color: `{color}`") | |
# Choose model name | |
model_name = "stabilityai/stablelm-base-alpha-7b" #@param ["stabilityai/stablelm-base-alpha-7b", "stabilityai/stablelm-tuned-alpha-7b", "stabilityai/stablelm-base-alpha-3b", "stabilityai/stablelm-tuned-alpha-3b"] | |
cprint(f"Using `{model_name}`", color="blue") | |
if torch.cuda.is_available(): | |
cprint("CUDA is available", color="green") | |
else: | |
cprint("CUDA is not available", color="red") | |
import sys | |
sys.exit(0) | |
# Select "big model inference" parameters | |
torch_dtype = "float16" #@param ["float16", "bfloat16", "float"] | |
load_in_8bit = False #@param {type:"boolean"} | |
device_map = "auto" | |
cprint(f"Loading with: `{torch_dtype=}, {load_in_8bit=}, {device_map=}`") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=getattr(torch, torch_dtype), | |
load_in_8bit=load_in_8bit, | |
device_map=device_map, | |
offload_folder="./offload", | |
) | |
cprint(f"Loaded model: `{model_name}` ({model.device})", color="green") | |
prompt = "Define relativity" #@param {type:"string"} | |
# Sampling args | |
max_new_tokens = 64 #@param {type:"slider", min:32.0, max:3072.0, step:32} | |
temperature = 0.5 #@param {type:"slider", min:0.0, max:1.25, step:0.05} | |
top_k = 0 #@param {type:"slider", min:0.0, max:1.0, step:0.05} | |
top_p = 0.9 #@param {type:"slider", min:0.0, max:1.0, step:0.05} | |
do_sample = True #@param {type:"boolean"} | |
cprint(f"Sampling with: `{max_new_tokens=}, {temperature=}, {top_k=}, {top_p=}, {do_sample=}`") | |
hr() | |
# Create `generate` inputs | |
inputs = tokenizer(prompt, return_tensors="pt") | |
inputs.to(model.device) | |
# Generate | |
tokens = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=do_sample, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Extract out only the completion tokens | |
completion_tokens = tokens[0][inputs['input_ids'].size(1):] | |
completion = tokenizer.decode(completion_tokens, skip_special_tokens=True) | |
# Display | |
print(prompt, end="") | |
cprint(completion, color="green") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment