Created
January 8, 2025 03:59
-
-
Save cnmoro/6beb12eadf26a3fd70e9a0fa2516dd8c to your computer and use it in GitHub Desktop.
SpatioTemporalGraphEncoding
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, Dataset | |
from collections import defaultdict | |
class WordGraph: | |
def __init__(self): | |
self.graph = defaultdict(list) | |
def add_edge(self, word1, word2, weight=1.0): | |
"""Add a directed edge with a weight (e.g., distance or co-occurrence score).""" | |
self.graph[word1].append((word2, weight)) | |
def get_neighbors(self, word): | |
"""Retrieve neighbors of a word.""" | |
return self.graph[word] | |
class GraphEncoder: | |
def __init__(self, vocab, max_steps=5, decay=0.8): | |
self.vocab = vocab | |
self.max_steps = max_steps # How far to traverse the graph | |
self.decay = decay # Time-decay factor for longer paths | |
def encode(self, graph, start_word): | |
"""Encode a word as a fixed-size vector based on graph traversal.""" | |
vector = np.zeros(len(self.vocab)) # Fixed-size vector for each word | |
visited = set() | |
# Depth-limited traversal | |
def traverse(node, depth, path_score): | |
if depth > self.max_steps or node in visited: | |
return | |
visited.add(node) | |
vector[self.vocab[node]] += path_score # Update vector based on path score | |
for neighbor, weight in graph.get_neighbors(node): | |
traverse(neighbor, depth + 1, path_score * weight * self.decay) | |
traverse(start_word, depth=0, path_score=1.0) | |
return vector | |
# Step 1: Dataset Preparation | |
class TextDataset(Dataset): | |
def __init__(self, texts, vocab): | |
self.texts = texts | |
self.vocab = vocab | |
def __len__(self): | |
return len(self.texts) | |
def __getitem__(self, idx): | |
tokens = self.texts[idx].split() | |
return tokens | |
# Step 2: Build Vocabulary | |
def build_vocab(texts): | |
vocab = {word: idx for idx, word in enumerate(set(" ".join(texts).split()))} | |
return vocab | |
# Step 3: Build Graph | |
def build_graph(texts, vocab): | |
graph = WordGraph() | |
for text in texts: | |
tokens = text.split() | |
for i in range(len(tokens) - 1): | |
graph.add_edge(tokens[i], tokens[i + 1], weight=1.0) | |
return graph | |
# Step 4: Encode Texts | |
def encode_texts(texts, graph, vocab): | |
encoder = GraphEncoder(vocab) | |
encoded_texts = [] | |
for text in texts: | |
tokens = text.split() | |
encoded_vectors = np.zeros((len(tokens), len(vocab))) | |
for i, token in enumerate(tokens): | |
encoded_vectors[i] = encoder.encode(graph, token) | |
encoded_texts.append(encoded_vectors) | |
return encoded_texts | |
# Putting It All Together | |
if __name__ == "__main__": | |
# Sample Text Data | |
texts = [ | |
"Today there are more than an estimated number of fans", | |
"Netflix has just released another popular series" | |
] | |
# Build Vocabulary and Graph | |
vocab = build_vocab(texts) | |
graph = build_graph(texts, vocab) | |
# Encode Texts | |
encoded_texts = encode_texts(texts, graph, vocab) | |
print("Encoded Text Vectors:") | |
for text, encoded in zip(texts, encoded_texts): | |
print(f"Text: {text}") | |
print(f"Encoded: {encoded}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment