Created
January 3, 2024 20:38
-
-
Save cobanov/d4f76cf118ce3da4746d561cc4de30e0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from PIL import Image | |
from misc import colorize | |
class DepthEstimationModel: | |
def __init__(self) -> None: | |
self.device = self._get_device() | |
self.model = self._initialize_model( | |
model_repo="isl-org/ZoeDepth", model_name="ZoeD_N" | |
).to(self.device) | |
def _get_device(self): | |
return "cuda" if torch.cuda.is_available() else "cpu" | |
def _initialize_model(self, model_repo="isl-org/ZoeDepth", model_name="ZoeD_N"): | |
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) | |
model = torch.hub.load( | |
model_repo, model_name, pretrained=True, skip_validation=False | |
) | |
model.eval() | |
print("Model initialized.") | |
return model | |
def save_colored_depth(self, depth_numpy, output_path): | |
colored = colorize(depth_numpy) | |
Image.fromarray(colored).save(output_path) | |
print("Image saved.") | |
def calculate_depthmap(self, image_path, output_path): | |
image = Image.open(image_path).convert("RGB") | |
print("Image read.") | |
depth_numpy = self.model.infer_pil(image) | |
self.save_colored_depth(depth_numpy, output_path) | |
return f"Image saved to {output_path}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment