Created
December 22, 2013 16:12
-
-
Save cocodrips/8084749 to your computer and use it in GitHub Desktop.
SRM599 div2 Med
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import collections | |
import math | |
class BigFatInteger2: | |
def isDivisible(self, A, B, C, D): | |
As = self._prime_decomposition(A) | |
Cs = self._prime_decomposition(C) | |
print As, Cs | |
for c in set(Cs): | |
if c not in As: | |
return "not divisible" | |
Acount = collections.Counter(As) | |
Ccount = collections.Counter(Cs) | |
for a_key, a_value in Acount.items(): | |
if a_value * B < Ccount[a_key] * D: | |
return "not divisible" | |
return "divisible" | |
def _prime_decomposition(self, n): | |
array = [] | |
primes = self.primetable(int(math.ceil(math.sqrt(n)))) | |
for p in primes: | |
while n % p == 0: | |
n /= p | |
array.append(p) | |
if n == 1: | |
break | |
else: | |
array.append(n) | |
return array | |
def primetable(self, max): | |
sq = math.sqrt(max) | |
table = [] | |
t = range(0, max+1) | |
t[0] = 0 | |
t[1] = 0 | |
p = 2 | |
while p <= sq: | |
if t[p] != 0: | |
j = p + p | |
while j <= max: | |
t[j] = 0 | |
j += p | |
p += 1 | |
for p in t: | |
if p != 0: | |
table.append(p) | |
return table |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment