Created
June 21, 2018 15:19
-
-
Save cocreature/d366b1e20021d1da07842fced5a6af24 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {-# LANGUAGE FlexibleContexts #-} | |
| {-# LANGUAGE RankNTypes #-} | |
| {-# LANGUAGE ScopedTypeVariables #-} | |
| {-# LANGUAGE UndecidableInstances #-} | |
| module ReflectOrd where | |
| import Data.Reflection | |
| import Data.Proxy | |
| newtype Ordable s a = Ordable { unordable :: a } | |
| instance Reifies s (a -> a -> Ordering) => Eq (Ordable s a) where | |
| Ordable a == Ordable b = reflect (Proxy :: Proxy s) a b == EQ | |
| instance Reifies s (a -> a -> Ordering) => Ord (Ordable s a) where | |
| compare (Ordable a) (Ordable b) = reflect (Proxy :: Proxy s) a b | |
| f :: forall a x y. (Functor x, Functor y) => (a -> a -> Ordering) -> (forall b. Ord b => x b -> y b) -> x a -> y a | |
| f f g xs = | |
| reify f $ \(Proxy :: Proxy s) -> | |
| fmap unordable (g (fmap (\x -> Ordable x :: Ordable s a) xs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
{-# Language DefaultSignatures, RankNTypes, FlexibleContexts, ScopedTypeVariables, UndecidableInstances #-} module Help where import Data.Coerce import Data.Reflection import Data.Proxy class Coercible1 f where coerce1 :: Coercible a b => f a -> f b default coerce1 :: (Coercible (f a) (f b)) => f a -> f b coerce1 = coerce instance Coercible1 [] -- easy to make instances when they are valid newtype Ordable s a = Ordable { unordable :: a } instance Reifies s (a -> a -> Ordering) => Eq (Ordable s a) where Ordable a == Ordable b = reflect (Proxy :: Proxy s) a b == EQ instance Reifies s (a -> a -> Ordering) => Ord (Ordable s a) where compare (Ordable a) (Ordable b) = reflect (Proxy :: Proxy s) a b whatisrt :: forall a x y. (Coercible1 x, Coercible1 y) => (a -> a -> Ordering) -> (forall b. Ord b => x b -> y b) -> x a -> y a whatisrt f g xs = reify f $ \(Proxy :: Proxy s) -> coerce1 (g (coerce1 xs :: x (Ordable s a)))