Created
December 3, 2020 20:50
-
-
Save codekansas/375c4a2f1ecd26d7fc0501f418de5032 to your computer and use it in GitHub Desktop.
Script to parse the Webtime Tracker CSV file and plot it
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import argparse | |
from datetime import datetime | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
def smoothed(t: np.ndarray, smoothing: int) -> np.ndarray: | |
if smoothing <= 0: | |
return t | |
left, right = smoothing // 2, (smoothing - 1) // 2 | |
window = np.hanning(smoothing) | |
window /= window.sum() | |
smooth_t = np.convolve(t, window)[left:-right] | |
return smooth_t | |
def main(args: argparse.Namespace) -> None: | |
data = pd.read_csv(args.csv) | |
largest = data.loc[data.sum(1).nlargest(args.num_sites).index.values] | |
domains = list(largest["Domain"]) | |
times = largest.to_numpy()[:, 1:] | |
dates = [ | |
datetime.strptime(date_string, '%Y-%m-%d') | |
for date_string in data.columns[1:] | |
] | |
fig = plt.figure(figsize=(10, 5)) | |
for domain, time in zip(domains, times): | |
time = (np.array(time, dtype=np.int32) + 30) // 60 | |
plt.plot(dates, smoothed(time, args.smoothing), label=domain) | |
plt.legend(title="Sites", bbox_to_anchor=(1.05, 1), loc="upper left") | |
fig.autofmt_xdate() | |
plt.xlabel("Date") | |
plt.ylabel("Minutes") | |
plt.tight_layout() | |
plt.savefig("time.svg") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Parses Webtime tracker data") | |
parser.add_argument("csv", help="Path to the Webtime CSV") | |
parser.add_argument("-n", "--num-sites", type=int, default=10, | |
help="Number of sites to look at") | |
parser.add_argument("-s", "--smoothing", type=int, default=20, | |
help="Smoothing window length") | |
args = parser.parse_args() | |
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment