Created
July 13, 2016 07:23
-
-
Save codekansas/42326e8a4cf57742ea5fdc1168ee5775 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import theano | |
import theano.tensor as T | |
import numpy as np | |
import time | |
X = theano.shared(value=np.asarray([[0, 1], [1, 0], [0, 0], [1, 1]]), name='X') | |
y = theano.shared(value=np.asarray([[0], [0], [1], [1]]), name='y') | |
rng = np.random.RandomState(1234) | |
LEARNING_RATE = 0.1 | |
def layer(*shape): | |
mag = 4. * np.sqrt(6. / sum(shape)) | |
return theano.shared(value=np.asarray(rng.uniform(low=-mag, high=mag, | |
size=shape), dtype=theano.config.floatX), name='W', borrow=True, strict=False) | |
W1 = layer(2, 5) | |
W2 = layer(5, 1) | |
b1 = layer(5) | |
b2 = layer(1) | |
output = T.nnet.sigmoid(T.dot(T.nnet.relu(T.dot(X, W1) + b1), W2) + b2) | |
cost = T.mean((y - output) ** 2) | |
updates = [(W1, W1 - LEARNING_RATE * T.grad(cost, W1)), | |
(W2, W2 - LEARNING_RATE * T.grad(cost, W2)), | |
(b1, b1 - LEARNING_RATE * T.grad(cost, b1)), | |
(b2, b2 - LEARNING_RATE * T.grad(cost, b2))] | |
train = theano.function(inputs=[], outputs=[], updates=updates) | |
test = theano.function(inputs=[], outputs=cost) | |
print('Error before:', test()) | |
start = time.time() | |
for i in range(10000): | |
train() | |
end = time.time() | |
print('Error after:', test()) | |
print('Time (s):', end - start) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Error before: 0.372680536564
Error after: 0.000388681638475
Time (s): 0.184696912766