Skip to content

Instantly share code, notes, and snippets.

@codeperfectplus
Last active June 28, 2020 03:13
Show Gist options
  • Save codeperfectplus/ba90d861c9679542a3a0714a884e7cb1 to your computer and use it in GitHub Desktop.
Save codeperfectplus/ba90d861c9679542a3a0714a884e7cb1 to your computer and use it in GitHub Desktop.
## Importing the Libraries
import pandas as pd
import matplotlib.pyplot as plt
## Importing the dataset
data = pd.read_csv("https://raw.githubusercontent.com/codePerfectPlus/DataAnalysisWithJupyter/master/SalaryVsExperinceModel/Salary.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
data.head()
## Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.3, random_state=12)
## Fit and Predict Model
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train_X, train_y)
## Predicting the Test set results
predicted_y = lr.predict(test_X)
## Comparing the Test Set with Predicted Values
df = pd.DataFrame({'Real Values':test_y,"Predict Value":predicted_y})
df.head()
## Visualising the Test set results
plt.scatter(test_X, test_y, color = 'red')
plt.scatter(test_X, predicted_y, color = 'green')
plt.plot(train_X, lr.predict(train_X), color = 'black')
plt.title('Salary vs Experience (Result)')
plt.xlabel('YearsExperience')
plt.ylabel('Salary')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment