Skip to content

Instantly share code, notes, and snippets.

@coderodde
Last active October 22, 2024 09:06
Show Gist options
  • Save coderodde/8585a243fee5e1a56a1f25f33a3b3e8a to your computer and use it in GitHub Desktop.
Save coderodde/8585a243fee5e1a56a1f25f33a3b3e8a to your computer and use it in GitHub Desktop.
The output of VerbosePartialRunningTimeStatisticsProducer in FittingWorkRatios.
<<< PartialRunningTimeStatisticsProducer >>>
[Data set 1 ] curve: mean = 0,856112, std = 0,126600, dist = 0,161782; data set: mean = 0,858582, std = 0,233575.
[Data set 2 ] curve: mean = 0,840323, std = 0,108234, dist = 0,168597; data set: mean = 0,842195, std = 0,228046.
[Data set 3 ] curve: mean = 0,838600, std = 0,083718, dist = 0,173736; data set: mean = 0,839846, std = 0,226096.
[Data set 4 ] curve: mean = 0,832649, std = 0,074789, dist = 0,151485; data set: mean = 0,834139, std = 0,198362.
[Data set 5 ] curve: mean = 0,798199, std = 0,085541, dist = 0,138090; data set: mean = 0,799900, std = 0,192366.
[Data set 6 ] curve: mean = 0,836433, std = 0,103488, dist = 0,164244; data set: mean = 0,838495, std = 0,215957.
[Data set 7 ] curve: mean = 0,809561, std = 0,064404, dist = 0,151362; data set: mean = 0,810626, std = 0,187350.
[Data set 8 ] curve: mean = 0,834674, std = 0,095554, dist = 0,150443; data set: mean = 0,836188, std = 0,200333.
[Data set 9 ] curve: mean = 0,824165, std = 0,088805, dist = 0,162482; data set: mean = 0,825575, std = 0,217074.
[Data set 10 ] curve: mean = 0,816389, std = 0,106829, dist = 0,156934; data set: mean = 0,818512, std = 0,222927.
[Data set 11 ] curve: mean = 0,834688, std = 0,091761, dist = 0,169516; data set: mean = 0,836626, std = 0,218073.
[Data set 12 ] curve: mean = 0,829745, std = 0,110439, dist = 0,154956; data set: mean = 0,831888, std = 0,219788.
[Data set 13 ] curve: mean = 0,807531, std = 0,059143, dist = 0,154420; data set: mean = 0,808255, std = 0,197990.
[Data set 14 ] curve: mean = 0,833132, std = 0,091034, dist = 0,163369; data set: mean = 0,835021, std = 0,213369.
[Data set 15 ] curve: mean = 0,869375, std = 0,106111, dist = 0,151138; data set: mean = 0,869930, std = 0,212611.
[Data set 16 ] curve: mean = 0,831915, std = 0,068606, dist = 0,159234; data set: mean = 0,832026, std = 0,203664.
[Data set 17 ] curve: mean = 0,845675, std = 0,105097, dist = 0,142886; data set: mean = 0,847486, std = 0,201217.
[Data set 18 ] curve: mean = 0,831476, std = 0,083798, dist = 0,147063; data set: mean = 0,832749, std = 0,197019.
[Data set 19 ] curve: mean = 0,834509, std = 0,111978, dist = 0,159569; data set: mean = 0,837082, std = 0,222954.
[Data set 20 ] curve: mean = 0,823122, std = 0,098178, dist = 0,163057; data set: mean = 0,825489, std = 0,217352.
[Data set 21 ] curve: mean = 0,835085, std = 0,078186, dist = 0,159443; data set: mean = 0,836910, std = 0,205138.
[Data set 22 ] curve: mean = 0,835616, std = 0,093951, dist = 0,174489; data set: mean = 0,837365, std = 0,224717.
[Data set 23 ] curve: mean = 0,820285, std = 0,100186, dist = 0,158855; data set: mean = 0,822965, std = 0,215196.
[Data set 24 ] curve: mean = 0,837464, std = 0,074573, dist = 0,178839; data set: mean = 0,837978, std = 0,225968.
[Data set 25 ] curve: mean = 0,835694, std = 0,069173, dist = 0,166175; data set: mean = 0,836727, std = 0,204415.
[Data set 26 ] curve: mean = 0,832881, std = 0,087990, dist = 0,175868; data set: mean = 0,834858, std = 0,223978.
[Data set 27 ] curve: mean = 0,826156, std = 0,124242, dist = 0,150907; data set: mean = 0,829411, std = 0,223659.
[Data set 28 ] curve: mean = 0,838283, std = 0,094965, dist = 0,169833; data set: mean = 0,840211, std = 0,224479.
[Data set 29 ] curve: mean = 0,797801, std = 0,085411, dist = 0,140062; data set: mean = 0,799113, std = 0,196033.
[Data set 30 ] curve: mean = 0,849567, std = 0,110020, dist = 0,164501; data set: mean = 0,852028, std = 0,230475.
[Data set 31 ] curve: mean = 0,795653, std = 0,093432, dist = 0,141384; data set: mean = 0,797848, std = 0,200192.
[Data set 32 ] curve: mean = 0,842236, std = 0,109880, dist = 0,141791; data set: mean = 0,844380, std = 0,201948.
[Data set 33 ] curve: mean = 0,817257, std = 0,072162, dist = 0,160868; data set: mean = 0,818170, std = 0,205338.
[Data set 34 ] curve: mean = 0,796831, std = 0,107698, dist = 0,142363; data set: mean = 0,799737, std = 0,214717.
[Data set 35 ] curve: mean = 0,832976, std = 0,095981, dist = 0,180174; data set: mean = 0,835486, std = 0,232694.
[Data set 36 ] curve: mean = 0,841319, std = 0,101399, dist = 0,152978; data set: mean = 0,843494, std = 0,205063.
[Data set 37 ] curve: mean = 0,824920, std = 0,107922, dist = 0,165491; data set: mean = 0,827902, std = 0,228108.
[Data set 38 ] curve: mean = 0,827721, std = 0,101770, dist = 0,158608; data set: mean = 0,829759, std = 0,211523.
[Data set 39 ] curve: mean = 0,813244, std = 0,078420, dist = 0,139255; data set: mean = 0,814045, std = 0,187942.
[Data set 40 ] curve: mean = 0,836452, std = 0,081496, dist = 0,150089; data set: mean = 0,837480, std = 0,203542.
[Data set 41 ] curve: mean = 0,836248, std = 0,099743, dist = 0,163704; data set: mean = 0,837596, std = 0,219009.
[Data set 42 ] curve: mean = 0,802500, std = 0,084640, dist = 0,139834; data set: mean = 0,804040, std = 0,197078.
[Data set 43 ] curve: mean = 0,819298, std = 0,081368, dist = 0,172318; data set: mean = 0,820332, std = 0,218272.
[Data set 44 ] curve: mean = 0,822259, std = 0,094218, dist = 0,191375; data set: mean = 0,824835, std = 0,239699.
[Data set 45 ] curve: mean = 0,834290, std = 0,106359, dist = 0,161504; data set: mean = 0,836664, std = 0,219930.
[Data set 46 ] curve: mean = 0,826477, std = 0,087036, dist = 0,171505; data set: mean = 0,827893, std = 0,223832.
[Data set 47 ] curve: mean = 0,794634, std = 0,090318, dist = 0,149014; data set: mean = 0,797122, std = 0,206240.
[Data set 48 ] curve: mean = 0,839660, std = 0,116414, dist = 0,152896; data set: mean = 0,842679, std = 0,215047.
[Data set 49 ] curve: mean = 0,815746, std = 0,082920, dist = 0,150785; data set: mean = 0,817590, std = 0,195154.
[Data set 50 ] curve: mean = 0,832616, std = 0,103326, dist = 0,173983; data set: mean = 0,835525, std = 0,227243.
[Data set 51 ] curve: mean = 0,823689, std = 0,093240, dist = 0,165333; data set: mean = 0,826044, std = 0,220211.
[Data set 52 ] curve: mean = 0,819098, std = 0,099309, dist = 0,156475; data set: mean = 0,821073, std = 0,213065.
[Data set 53 ] curve: mean = 0,854915, std = 0,123401, dist = 0,168936; data set: mean = 0,857613, std = 0,240703.
[Data set 54 ] curve: mean = 0,843236, std = 0,116225, dist = 0,157739; data set: mean = 0,845950, std = 0,223717.
[Data set 55 ] curve: mean = 0,817511, std = 0,119071, dist = 0,153791; data set: mean = 0,820664, std = 0,216389.
[Data set 56 ] curve: mean = 0,828896, std = 0,061227, dist = 0,175441; data set: mean = 0,829456, std = 0,216574.
[Data set 57 ] curve: mean = 0,853753, std = 0,102422, dist = 0,169958; data set: mean = 0,855320, std = 0,222349.
[Data set 58 ] curve: mean = 0,874657, std = 0,085659, dist = 0,162890; data set: mean = 0,874445, std = 0,210164.
[Data set 59 ] curve: mean = 0,819396, std = 0,082434, dist = 0,147365; data set: mean = 0,821054, std = 0,199438.
[Data set 60 ] curve: mean = 0,827515, std = 0,114427, dist = 0,158510; data set: mean = 0,829830, std = 0,223210.
[Data set 61 ] curve: mean = 0,815901, std = 0,097935, dist = 0,124063; data set: mean = 0,817667, std = 0,187313.
[Data set 62 ] curve: mean = 0,836559, std = 0,095407, dist = 0,176562; data set: mean = 0,838467, std = 0,231128.
[Data set 63 ] curve: mean = 0,837168, std = 0,101071, dist = 0,160512; data set: mean = 0,839611, std = 0,217384.
[Data set 64 ] curve: mean = 0,796008, std = 0,073926, dist = 0,134401; data set: mean = 0,797312, std = 0,184335.
[Data set 65 ] curve: mean = 0,815188, std = 0,085296, dist = 0,147180; data set: mean = 0,817018, std = 0,200731.
[Data set 66 ] curve: mean = 0,840692, std = 0,104857, dist = 0,161134; data set: mean = 0,842139, std = 0,216420.
[Data set 67 ] curve: mean = 0,820197, std = 0,083142, dist = 0,138867; data set: mean = 0,821939, std = 0,190383.
[Data set 68 ] curve: mean = 0,819344, std = 0,078047, dist = 0,153446; data set: mean = 0,820314, std = 0,205905.
[Data set 69 ] curve: mean = 0,844974, std = 0,102486, dist = 0,166936; data set: mean = 0,847174, std = 0,224246.
[Data set 70 ] curve: mean = 0,837404, std = 0,104687, dist = 0,159425; data set: mean = 0,839606, std = 0,216445.
[Data set 71 ] curve: mean = 0,820933, std = 0,067580, dist = 0,159614; data set: mean = 0,822161, std = 0,203057.
[Data set 72 ] curve: mean = 0,817163, std = 0,100879, dist = 0,170501; data set: mean = 0,820297, std = 0,225179.
[Data set 73 ] curve: mean = 0,838573, std = 0,100163, dist = 0,138855; data set: mean = 0,840326, std = 0,202911.
[Data set 74 ] curve: mean = 0,788226, std = 0,075136, dist = 0,152651; data set: mean = 0,789776, std = 0,198203.
[Data set 75 ] curve: mean = 0,816791, std = 0,111883, dist = 0,156639; data set: mean = 0,819510, std = 0,216788.
[Data set 76 ] curve: mean = 0,826070, std = 0,106573, dist = 0,138727; data set: mean = 0,827971, std = 0,204401.
[Data set 77 ] curve: mean = 0,817502, std = 0,095836, dist = 0,150548; data set: mean = 0,819966, std = 0,214766.
[Data set 78 ] curve: mean = 0,837510, std = 0,066608, dist = 0,173114; data set: mean = 0,838734, std = 0,218348.
[Data set 79 ] curve: mean = 0,796090, std = 0,096111, dist = 0,147819; data set: mean = 0,798296, std = 0,200074.
[Data set 80 ] curve: mean = 0,811054, std = 0,100925, dist = 0,138629; data set: mean = 0,812835, std = 0,193829.
[Data set 81 ] curve: mean = 0,826834, std = 0,090107, dist = 0,157626; data set: mean = 0,828552, std = 0,208522.
[Data set 82 ] curve: mean = 0,818010, std = 0,112335, dist = 0,157496; data set: mean = 0,820280, std = 0,232566.
[Data set 83 ] curve: mean = 0,821614, std = 0,092531, dist = 0,176487; data set: mean = 0,823572, std = 0,230966.
[Data set 84 ] curve: mean = 0,841189, std = 0,067345, dist = 0,167623; data set: mean = 0,841425, std = 0,219607.
[Data set 85 ] curve: mean = 0,835158, std = 0,085252, dist = 0,185618; data set: mean = 0,836997, std = 0,233854.
[Data set 86 ] curve: mean = 0,818036, std = 0,108029, dist = 0,170546; data set: mean = 0,821196, std = 0,236228.
[Data set 87 ] curve: mean = 0,855656, std = 0,075987, dist = 0,166680; data set: mean = 0,855635, std = 0,208763.
[Data set 88 ] curve: mean = 0,816478, std = 0,111783, dist = 0,148747; data set: mean = 0,818921, std = 0,215743.
[Data set 89 ] curve: mean = 0,841088, std = 0,086218, dist = 0,161815; data set: mean = 0,842820, std = 0,213923.
[Data set 90 ] curve: mean = 0,827328, std = 0,092290, dist = 0,149094; data set: mean = 0,828709, std = 0,207249.
[Data set 91 ] curve: mean = 0,836282, std = 0,096044, dist = 0,157538; data set: mean = 0,837209, std = 0,214291.
[Data set 92 ] curve: mean = 0,811730, std = 0,094330, dist = 0,158856; data set: mean = 0,814013, std = 0,215469.
[Data set 93 ] curve: mean = 0,818653, std = 0,083894, dist = 0,155813; data set: mean = 0,820383, std = 0,205567.
[Data set 94 ] curve: mean = 0,850252, std = 0,064720, dist = 0,192829; data set: mean = 0,852036, std = 0,234879.
[Data set 95 ] curve: mean = 0,827331, std = 0,053215, dist = 0,173675; data set: mean = 0,828320, std = 0,214951.
[Data set 96 ] curve: mean = 0,820995, std = 0,091008, dist = 0,149488; data set: mean = 0,822760, std = 0,203891.
[Data set 97 ] curve: mean = 0,799731, std = 0,086530, dist = 0,131495; data set: mean = 0,801280, std = 0,191307.
[Data set 98 ] curve: mean = 0,832363, std = 0,122836, dist = 0,158651; data set: mean = 0,835218, std = 0,227453.
[Data set 99 ] curve: mean = 0,831429, std = 0,089813, dist = 0,139224; data set: mean = 0,832180, std = 0,198188.
[Data set 100] curve: mean = 0,824348, std = 0,086337, dist = 0,175770; data set: mean = 0,826205, std = 0,226297.
Minimum distance: 0,124063, data set number: 61.
Average fitting curve distance: 0.13440065427532646.
Fitting curve: -0,987282 H^2 + (0,962808)H + (0,643698)
Best data set:
0.019900 0.773021
0.039700 0.714453
0.059500 0.745260
0.079300 0.659833
0.099100 0.624405
0.118900 0.618987
0.138700 0.621838
0.158500 1.191825
0.178300 1.064156
0.198100 0.713074
0.217900 0.647788
0.237700 0.926590
0.257500 0.828646
0.277300 1.127545
0.297100 0.786617
0.316900 0.844728
0.336700 0.622759
0.356500 1.094738
0.376300 0.620174
0.396100 0.776782
0.415900 0.765638
0.435700 0.845292
0.455500 0.852145
0.475300 0.928671
0.495100 0.676149
0.514900 0.765880
0.534700 0.791868
0.554500 0.706199
0.574300 0.734813
0.594100 1.153751
0.613900 0.734059
0.633700 0.902784
0.653500 0.968768
0.673300 0.916070
0.693100 0.764096
0.712900 0.966073
0.732700 0.775297
0.752500 0.830399
0.772300 0.796986
0.792100 0.972597
0.811900 0.781047
0.831700 0.828232
0.851500 0.860423
0.871300 0.721488
0.891100 0.638743
0.910900 0.656142
0.930700 0.625234
0.950500 0.485031
0.970300 0.471057
0.990100 0.482942
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment