Skip to content

Instantly share code, notes, and snippets.

@codingdudecom
Created November 1, 2023 06:23
Show Gist options
  • Save codingdudecom/9bc1b19ac82c556331da0c4f2efc7885 to your computer and use it in GitHub Desktop.
Save codingdudecom/9bc1b19ac82c556331da0c4f2efc7885 to your computer and use it in GitHub Desktop.
NLP Python code
from js import fetch
import nltk
from nltk.util import ngrams
from pathlib import Path
import os, sys, io, zipfile
stopwords = "i,me,my,myself,we,our,ours,ourselves,you,your,yours,yourself,yourselves,he,him,his,himself,she,her,hers,herself,it,its,itself,they,them,their,theirs,themselves,what,which,who,whom,this,that,these,those,am,is,are,was,were,be,been,being,have,has,had,having,do,does,did,doing,a,an,the,and,but,if,or,because,as,until,while,of,at,by,for,with,about,against,between,into,through,during,before,after,above,below,to,from,up,down,in,out,on,off,over,under,again,further,then,once,here,there,when,where,why,how,all,any,both,each,few,more,most,other,some,such,no,nor,not,only,own,same,so,than,too,very,s,t,can,will,just,don,should,now"
stopwords = stopwords.split(",")
punkt_downloaded = False
async def download_punkt():
global punkt_downloaded
if not punkt_downloaded:
response = await fetch('https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip')
js_buffer = await response.arrayBuffer()
py_buffer = js_buffer.to_py() # this is a memoryview
stream = py_buffer.tobytes() # now we have a bytes object
d = Path("/nltk_data/tokenizers")
d.mkdir(parents=True, exist_ok=True)
Path('/nltk_data/tokenizers/punkt.zip').write_bytes(stream)
# extract punkt.zip
zipfile.ZipFile('/nltk_data/tokenizers/punkt.zip').extractall(
path='/nltk_data/tokenizers/'
)
punkt_downloaded = True
async def extract_keywords(text):
global punkt_downloaded
if not punkt_downloaded:
response = await fetch('https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip')
js_buffer = await response.arrayBuffer()
py_buffer = js_buffer.to_py() # this is a memoryview
stream = py_buffer.tobytes() # now we have a bytes object
d = Path("/nltk_data/tokenizers")
d.mkdir(parents=True, exist_ok=True)
Path('/nltk_data/tokenizers/punkt.zip').write_bytes(stream)
# extract punkt.zip
zipfile.ZipFile('/nltk_data/tokenizers/punkt.zip').extractall(
path='/nltk_data/tokenizers/'
)
punkt_downloaded = True
# check file contents in /nltk_data/tokenizers/
# print(os.listdir("/nltk_data/tokenizers/punkt"))
# return nltk.word_tokenize(text)
words = nltk.word_tokenize(text)
words = [word for word in words if word.isalnum()]
filtered_words = [word for word in words if word.lower() not in stopwords]
# Create bi-grams and tri-grams
bigrams = list(ngrams(filtered_words, 2))
trigrams = list(ngrams(filtered_words, 3))
quadgrams = list(ngrams(filtered_words, 4))
# Calculate frequency distributions for bi-grams and tri-grams
bigram_freq_dist = nltk.FreqDist(bigrams)
trigram_freq_dist = nltk.FreqDist(trigrams)
quadgram_freq_dist = nltk.FreqDist(quadgrams)
data = bigram_freq_dist.most_common(10) + trigram_freq_dist.most_common(10) + quadgram_freq_dist.most_common(10)
# Get the top N words
# top_keywords = [word for word, freq in word_freq.most_common(10)]
formatted_data = [[" ".join(keyword), count] for keyword, count in data]
return formatted_data
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment