###1
- process_name:preculture
- temperature: 32 celsius
- time : overnight
- comment : inoculating 30 ml of YES media
- input: yeast cell
- container: yeast agar plate
- input: yeast media
- output: precultured yeast
| import re | |
| class tRNAsynthetase(object): | |
| def __init__(self, filepath="/Users/coela/projects/ATS_interaction/data/uniprot/aatrnasy.txt"): | |
| fileHandle = open(filepath,'r') | |
| match_tRNA = re.compile("(\S+)-tRNA synthetases \((EC \S+)\)") | |
| count = 0 | |
| switch = False | |
| self.info = dict() | |
| self.aadict = {"Alanyl" : "Ala", |
| import sys | |
| fileHandle = open(sys.argv[1],'r') | |
| for line in fileHandle: | |
| line = line.rstrip() | |
| #print line | |
| lines = line.split(" ,") | |
| #print lines | |
| for i,ent in enumerate(lines): | |
| if i == 3: | |
| break |
| import sys | |
| from Bio import SeqIO | |
| fh = open(sys.argv[1],"r") | |
| for gb_record in SeqIO.parse(fh, "genbank") : | |
| for (index, feature) in enumerate(gb_record.features) : | |
| if feature.type == 'source': | |
| print "\t".join([gb_record.name,feature.qualifiers['db_xref'][0].split(":")[1]]) | |
| break |
| from Bio import SeqIO | |
| for seq_record in SeqIO.parse("NC_000913.gbk", "genbank"): | |
| for feature in seq_record.features: | |
| if feature.qualifiers.has_key('locus_tag'): | |
| start = feature.location.nofuzzy_start | |
| end = feature.location.nofuzzy_end | |
| print ">" + feature.qualifiers['locus_tag'][0] | |
| print seq_record.seq[start:end] |
| from Bio import SeqIO | |
| for seq_record in SeqIO.parse("NC_000913.gbk", "genbank"): | |
| print ">" + seq_record.id | |
| print seq_record.seq |
| import glob | |
| files = glob.glob('./*.gbff') | |
| for file in files: | |
| fileHandle = open( file , 'r' ) | |
| for line in fileHandle: | |
| line = line.rstrip() | |
| print line |
| from Bio import Entrez | |
| import re | |
| import sys | |
| argvs = sys.argv | |
| Entrez.email = "[email protected]" | |
| handle = Entrez.efetch(db="nucleotide", id=argvs[1],rettype="gb", retmode="text") | |
| for line in handle.read().split("\n"): | |
| if re.match(" ORGANISM",line): |
###1
| #!/usr/bin/env python | |
| import os | |
| import re | |
| import sys | |
| argvs = sys.argv | |
| if len(argvs) == 1: | |
| argvs.append("") | |
| os.system('curl -k -X POST --data-urlencode \'payload={"channel": "#job", "username": "webhookbot", "text": "Your job is done: %s ", "icon_emoji": ":ghost:"}\' https://hooks.slack.com/services/hoge/hogehoge'%argvs[1]) |
| #-*- coding:utf-8 -*- | |
| import sys | |
| import numpy as np | |
| from sklearn.ensemble import RandomForestClassifier | |
| from sklearn.cross_validation import StratifiedKFold | |
| from sklearn.grid_search import GridSearchCV | |
| from sklearn.cross_validation import cross_val_score | |
| from sklearn.datasets import make_blobs | |
| from sklearn.ensemble import RandomForestClassifier | |
| from sklearn.ensemble import ExtraTreesClassifier |