Skip to content

Instantly share code, notes, and snippets.

@colesbury
Last active January 17, 2018 17:14
Show Gist options
  • Save colesbury/d8716729a91d378927cd57966de15c9f to your computer and use it in GitHub Desktop.
Save colesbury/d8716729a91d378927cd57966de15c9f to your computer and use it in GitHub Desktop.
// generated from tools/autograd/templates/python_torch_functions.cpp
// Python bindings for torch.* functions implemented through ATen.
//
// The functions are bound as static methods on a class
// torch._C._VariableFunctions which is also aliased as Variable._torch.
#include <Python.h>
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/utils/wrap_outputs.h"
#include "torch/csrc/utils/python_arg_parser.h"
#include "torch/csrc/utils/tensor_numpy.h"
#include "python_torch_functions_dispatch.h"
using at::Tensor;
using at::Scalar;
using at::ScalarType;
using at::Backend;
using namespace torch::autograd::utils;
namespace torch { namespace autograd {
static Tensor dispatch_clamp(const Tensor & self, Scalar min, Scalar max) {
AutoNoGIL no_gil;
AutoGPU auto_gpu(self);
return self.clamp(min, max);
}
static Tensor dispatch_clamp_min(const Tensor & self, Scalar min) {
AutoNoGIL no_gil;
AutoGPU auto_gpu(self);
return self.clamp_min(min);
}
static Tensor dispatch_clamp_max(const Tensor & self, Scalar max) {
AutoNoGIL no_gil;
AutoGPU auto_gpu(self);
return self.clamp_max(max);
}
// The Python clamp() syntax has to be mapped to one of three C++ functions
static PyObject * THPVariable_clamp(PyObject* module, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"clamp(Tensor input, Scalar min=None, Scalar max=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (!r.isNone(1) && !r.isNone(2)) {
return THPVariable_Wrap(dispatch_clamp(r.tensor(0), r.scalar(1), r.scalar(2)));
} else if (!r.isNone(1)) {
return THPVariable_Wrap(dispatch_clamp_min(r.tensor(0), r.scalar(1)));
} else if (!r.isNone(2)) {
return THPVariable_Wrap(dispatch_clamp_max(r.tensor(0), r.scalar(2)));
} else {
throw std::runtime_error("At least one of 'min' or 'max' must not be None");
}
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_from_numpy(PyObject* module, PyObject* arg)
{
HANDLE_TH_ERRORS
auto data = torch::utils::tensor_from_numpy(arg);
return THPVariable_Wrap(make_variable(std::move(data)));
END_HANDLE_TH_ERRORS
}
// generated methods start here
static PyObject * THPVariable___and__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__and__(Tensor input, Scalar other, *, Tensor out=None)",
"__and__(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch___and__(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch___and__(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch___and__(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch___and__(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___iand__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__iand__(Tensor input, Scalar other)",
"__iand__(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch___iand__(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch___iand__(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___ilshift__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__ilshift__(Tensor input, Scalar other)",
"__ilshift__(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch___ilshift__(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch___ilshift__(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___ior__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__ior__(Tensor input, Scalar other)",
"__ior__(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch___ior__(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch___ior__(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___irshift__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__irshift__(Tensor input, Scalar other)",
"__irshift__(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch___irshift__(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch___irshift__(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___ixor__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__ixor__(Tensor input, Scalar other)",
"__ixor__(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch___ixor__(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch___ixor__(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___lshift__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__lshift__(Tensor input, Scalar other, *, Tensor out=None)",
"__lshift__(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch___lshift__(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch___lshift__(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch___lshift__(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch___lshift__(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___or__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__or__(Tensor input, Scalar other, *, Tensor out=None)",
"__or__(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch___or__(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch___or__(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch___or__(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch___or__(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___rshift__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__rshift__(Tensor input, Scalar other, *, Tensor out=None)",
"__rshift__(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch___rshift__(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch___rshift__(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch___rshift__(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch___rshift__(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable___xor__(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"__xor__(Tensor input, Scalar other, *, Tensor out=None)",
"__xor__(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch___xor__(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch___xor__(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch___xor__(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch___xor__(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__convolution(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled)",
});
PyObject* parsed_args[12];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8), r.toBool(9), r.toBool(10), r.toBool(11)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__convolution_nogroup(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_convolution_nogroup(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__convolution_nogroup(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__copy_ignoring_overlaps_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_copy_ignoring_overlaps_(Tensor input, Tensor src)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__copy_ignoring_overlaps_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__det_with_svd(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_det_with_svd(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__det_with_svd(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__indices(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_indices(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__indices(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__s_where(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_s_where(Tensor condition, Tensor input, Tensor other)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__s_where(r.tensor(0), r.tensor(1), r.tensor(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__sparse_mask(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_sparse_mask(Tensor input, Tensor mask)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__sparse_mask(r.tensor(0), SparseTensor(r.tensor(1))));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__standard_gamma(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_standard_gamma(Tensor input, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch__standard_gamma(r.tensor(0), r.generator(1)));
} else {
return wrap(dispatch__standard_gamma(r.tensor(0), r.generator(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__standard_gamma_grad(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_standard_gamma_grad(Tensor input, Tensor output)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__standard_gamma_grad(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable__values(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_values(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch__values(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_abs(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"abs(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_abs(r.tensor(0)));
} else {
return wrap(dispatch_abs(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_abs_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"abs_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_abs_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_acos(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"acos(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_acos(r.tensor(0)));
} else {
return wrap(dispatch_acos(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_acos_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"acos_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_acos_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_adaptive_avg_pool1d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"adaptive_avg_pool1d(Tensor input, IntList[1] output_size)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_adaptive_avg_pool1d(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_adaptive_max_pool1d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"adaptive_max_pool1d(Tensor input, IntList[1] output_size)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_adaptive_max_pool1d(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_add(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"add(Tensor input, Scalar alpha, Tensor other)|deprecated",
"add(Tensor input, Scalar other, *, Scalar alpha=1, Tensor out=None)",
"add(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.tensor(2)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.scalar(2)));
} else {
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.scalar(2), r.tensor(3)));
}
} else if (r.idx == 2) {
if (r.isNone(3)) {
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2)));
} else {
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_add_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"add_(Tensor input, Scalar alpha, Tensor other)|deprecated",
"add_(Tensor input, Scalar other, *, Scalar alpha=1)",
"add_(Tensor input, Tensor other, *, Scalar alpha=1)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_add_(r.tensor(0), r.scalar(1), r.tensor(2)));
} else if (r.idx == 1) {
return wrap(dispatch_add_(r.tensor(0), r.scalar(1), r.scalar(2)));
} else if (r.idx == 2) {
return wrap(dispatch_add_(r.tensor(0), r.tensor(1), r.scalar(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addbmm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated",
"addbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated",
"addbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
if (r.isNone(5)) {
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
} else {
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addbmm_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addbmm_(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated",
"addbmm_(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated",
"addbmm_(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addbmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addbmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
return wrap(dispatch_addbmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addcdiv(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addcdiv(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated",
"addcdiv(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addcdiv(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 1) {
if (r.isNone(4)) {
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3)));
} else {
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addcdiv_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addcdiv_(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated",
"addcdiv_(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addcdiv_(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 1) {
return wrap(dispatch_addcdiv_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addcmul(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addcmul(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated",
"addcmul(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addcmul(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 1) {
if (r.isNone(4)) {
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3)));
} else {
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addcmul_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addcmul_(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated",
"addcmul_(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addcmul_(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 1) {
return wrap(dispatch_addcmul_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addmm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addmm(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2)|deprecated",
"addmm(Scalar beta, Tensor input, Tensor mat1, Tensor mat2)|deprecated",
"addmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
if (r.isNone(5)) {
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
} else {
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addmm_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addmm_(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2)|deprecated",
"addmm_(Scalar beta, Tensor input, Tensor mat1, Tensor mat2)|deprecated",
"addmm_(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
return wrap(dispatch_addmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addmv(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addmv(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec)|deprecated",
"addmv(Scalar beta, Tensor input, Tensor mat, Tensor vec)|deprecated",
"addmv(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
if (r.isNone(5)) {
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
} else {
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addmv_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addmv_(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec)|deprecated",
"addmv_(Scalar beta, Tensor input, Tensor mat, Tensor vec)|deprecated",
"addmv_(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
return wrap(dispatch_addmv_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addr(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addr(Scalar beta, Tensor input, Scalar alpha, Tensor vec1, Tensor vec2)|deprecated",
"addr(Scalar beta, Tensor input, Tensor vec1, Tensor vec2)|deprecated",
"addr(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
if (r.isNone(5)) {
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
} else {
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_addr_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"addr_(Scalar beta, Tensor input, Scalar alpha, Tensor vec1, Tensor vec2)|deprecated",
"addr_(Scalar beta, Tensor input, Tensor vec1, Tensor vec2)|deprecated",
"addr_(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_addr_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_addr_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
return wrap(dispatch_addr_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_all(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"all(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_all(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_allclose(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"allclose(Tensor input, Tensor other, double rtol=1e-05, double atol=1e-08)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_allclose(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_any(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"any(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_any(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_arange(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"arange(Scalar end, *, Tensor out=None)",
"arange(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_arange(r.scalar(0)));
} else {
return wrap(dispatch_arange(r.scalar(0), r.tensor(1)));
}
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_arange(r.scalar(0), r.scalar(1), r.scalar(2)));
} else {
return wrap(dispatch_arange(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_as_strided(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"as_strided(Tensor input, IntList size, IntList stride, int64_t storage_offset=-1, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(4)) {
return wrap(dispatch_as_strided(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3)));
} else {
return wrap(dispatch_as_strided(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_as_strided_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"as_strided_(Tensor input, IntList size, IntList stride, int64_t storage_offset=-1)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_as_strided_(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_asin(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"asin(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_asin(r.tensor(0)));
} else {
return wrap(dispatch_asin(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_asin_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"asin_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_asin_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_atan(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"atan(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_atan(r.tensor(0)));
} else {
return wrap(dispatch_atan(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_atan2(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"atan2(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_atan2_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"atan2_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_atan2_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_atan_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"atan_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_atan_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_baddbmm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"baddbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated",
"baddbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated",
"baddbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
if (r.isNone(5)) {
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
} else {
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_baddbmm_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"baddbmm_(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated",
"baddbmm_(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated",
"baddbmm_(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_baddbmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4)));
} else if (r.idx == 1) {
return wrap(dispatch_baddbmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3)));
} else if (r.idx == 2) {
return wrap(dispatch_baddbmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_batch_norm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, double momentum, double eps, bool cudnn_enabled)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7), r.toBool(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_bernoulli(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"bernoulli(Tensor input, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1)));
} else {
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_bernoulli_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"bernoulli_(Tensor input, Tensor p, Generator generator=None)",
"bernoulli_(Tensor input, double p, Generator generator=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_bernoulli_(r.tensor(0), r.tensor(1), r.generator(2)));
} else if (r.idx == 1) {
return wrap(dispatch_bernoulli_(r.tensor(0), r.toDouble(1), r.generator(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_bmm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"bmm(Tensor input, Tensor mat2, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_btrifact(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"btrifact(Tensor input, *, bool pivot=True, TensorList[2] out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_btrifact(r.tensor(0), r.toBool(1)));
} else {
auto results = r.tensorlist_n<2>(2);
return wrap(dispatch_btrifact(r.tensor(0), r.toBool(1), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_btrifact_with_info(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"btrifact_with_info(Tensor input, *, bool pivot=True, TensorList[3] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_btrifact_with_info(r.tensor(0), r.toBool(1)));
} else {
auto results = r.tensorlist_n<3>(2);
return wrap(dispatch_btrifact_with_info(r.tensor(0), r.toBool(1), results[0], results[1], results[2]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_btrisolve(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"btrisolve(Tensor input, Tensor LU_data, Tensor LU_pivots, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_btrisolve(r.tensor(0), r.tensor(1), r.tensor(2)));
} else {
return wrap(dispatch_btrisolve(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cat(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cat(TensorList tensors, int64_t dim=0, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1)));
} else {
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cauchy_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cauchy_(Tensor input, double median=0, double sigma=1, *, Generator generator=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cauchy_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ceil(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ceil(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_ceil(r.tensor(0)));
} else {
return wrap(dispatch_ceil(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ceil_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ceil_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_ceil_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_chunk(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"chunk(Tensor input, int64_t chunks, int64_t dim=0)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_chunk(r.tensor(0), r.toInt64(1), r.toInt64(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_clone(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"clone(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_clone(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv1d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv1d(Tensor input, Tensor weight, Tensor bias=None, IntList[1] stride=1, IntList[1] padding=0, IntList[1] dilation=1, int64_t groups=1)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv2d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv2d(Tensor input, Tensor weight, Tensor bias=None, IntList[2] stride=1, IntList[2] padding=0, IntList[2] dilation=1, int64_t groups=1)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv3d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv3d(Tensor input, Tensor weight, Tensor bias=None, IntList[3] stride=1, IntList[3] padding=0, IntList[3] dilation=1, int64_t groups=1)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv_tbc(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv_tbc(Tensor input, Tensor weight, Tensor bias, int64_t pad)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv_tbc(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv_transpose1d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv_transpose1d(Tensor input, Tensor weight, Tensor bias=None, IntList[1] stride=1, IntList[1] padding=0, IntList[1] output_padding=0, int64_t groups=1, IntList[1] dilation=1)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv_transpose1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv_transpose2d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv_transpose2d(Tensor input, Tensor weight, Tensor bias=None, IntList[2] stride=1, IntList[2] padding=0, IntList[2] output_padding=0, int64_t groups=1, IntList[2] dilation=1)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv_transpose2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_conv_transpose3d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"conv_transpose3d(Tensor input, Tensor weight, Tensor bias=None, IntList[3] stride=1, IntList[3] padding=0, IntList[3] output_padding=0, int64_t groups=1, IntList[3] dilation=1)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_conv_transpose3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_convolution(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cos(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cos(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_cos(r.tensor(0)));
} else {
return wrap(dispatch_cos(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cos_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cos_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cos_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cosh(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cosh(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_cosh(r.tensor(0)));
} else {
return wrap(dispatch_cosh(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cosh_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cosh_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cosh_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cross(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cross(Tensor input, Tensor other, int64_t dim=-1, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64(2)));
} else {
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_affine_grid_generator(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_affine_grid_generator(Tensor theta, int64_t N, int64_t C, int64_t H, int64_t W)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_affine_grid_generator(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_batch_norm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, double exponential_average_factor, double epsilon)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution(Tensor input, Tensor weight, Tensor? bias, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_backward_bias(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_backward_bias(Tensor grad_output)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_backward_bias(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_backward_input(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_backward_input(IntList self_size, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_backward_input(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_backward_weight(IntList weight_size, Tensor grad_output, Tensor input, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_backward_weight(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_transpose(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_transpose(Tensor input, Tensor weight, Tensor? bias, IntList padding, IntList output_padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[10];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_transpose(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.intlist(6), r.toInt64(7), r.toBool(8), r.toBool(9)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_transpose_backward_bias(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_transpose_backward_bias(Tensor grad_output)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_transpose_backward_bias(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_transpose_backward_input(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[8];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_transpose_backward_input(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toInt64(5), r.toBool(6), r.toBool(7)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_convolution_transpose_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_convolution_transpose_backward_weight(IntList weight_size, Tensor grad_output, Tensor input, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)",
});
PyObject* parsed_args[9];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_convolution_transpose_backward_weight(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cudnn_grid_sampler(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cudnn_grid_sampler(Tensor input, Tensor grid)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_cudnn_grid_sampler(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cumprod(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cumprod(Tensor input, int64_t dim, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1)));
} else {
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cumsum(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cumsum(Tensor input, int64_t dim, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1)));
} else {
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_data_ptr(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"data_ptr(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_data_ptr(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_det(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"det(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_det(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_diag(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"diag(Tensor input, int64_t diagonal=0, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1)));
} else {
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_digamma(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"digamma(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_digamma(r.tensor(0)));
} else {
return wrap(dispatch_digamma(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_digamma_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"digamma_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_digamma_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_dist(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"dist(Tensor input, Tensor other, Scalar p=2)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_dist(r.tensor(0), r.tensor(1), r.scalar(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_div(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"div(Tensor input, Scalar other, *, Tensor out=None)",
"div(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_div(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_div(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_div(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_div(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_div_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"div_(Tensor input, Scalar other)",
"div_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_div_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_div_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_dot(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"dot(Tensor input, Tensor tensor)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_dot(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_eig(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"eig(Tensor input, bool eigenvectors=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_eig(r.tensor(0), r.toBool(1)));
} else {
auto results = r.tensorlist_n<2>(2);
return wrap(dispatch_eig(r.tensor(0), r.toBool(1), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_embedding(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"embedding(Tensor weight, Tensor indices, int64_t padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_embedding(r.tensor(0), r.tensor(1), r.toInt64(2), r.toBool(3), r.toBool(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_embedding_renorm_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"embedding_renorm_(Tensor input, Tensor indices, double max_norm, double norm_type)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_embedding_renorm_(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_eq(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"eq(Tensor input, Scalar other, *, Tensor out=None)",
"eq(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_eq(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_eq(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_eq(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_eq(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_eq_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"eq_(Tensor input, Scalar other)",
"eq_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_eq_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_eq_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_equal(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"equal(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_equal(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_erf(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"erf(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_erf(r.tensor(0)));
} else {
return wrap(dispatch_erf(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_erf_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"erf_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_erf_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_erfinv(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"erfinv(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_erfinv(r.tensor(0)));
} else {
return wrap(dispatch_erfinv(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_erfinv_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"erfinv_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_erfinv_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_exp(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"exp(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_exp(r.tensor(0)));
} else {
return wrap(dispatch_exp(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_exp_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"exp_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_exp_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_expand(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"expand(Tensor input, IntList size)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_expand(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_expand_as(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"expand_as(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_expand_as(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_expm1(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"expm1(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_expm1(r.tensor(0)));
} else {
return wrap(dispatch_expm1(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_expm1_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"expm1_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_expm1_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_exponential_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"exponential_(Tensor input, double lambd=1, *, Generator generator=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_exponential_(r.tensor(0), r.toDouble(1), r.generator(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_eye(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"eye(int64_t n, int64_t m=1, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_eye(r.toInt64(0), r.toInt64(1)));
} else {
return wrap(dispatch_eye(r.toInt64(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_fill_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"fill_(Tensor input, Scalar value)",
"fill_(Tensor input, Tensor value)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_fill_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_fill_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_floor(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"floor(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_floor(r.tensor(0)));
} else {
return wrap(dispatch_floor(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_floor_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"floor_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_floor_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_fmod(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"fmod(Tensor input, Scalar other, *, Tensor out=None)",
"fmod(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_fmod_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"fmod_(Tensor input, Scalar other)",
"fmod_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_fmod_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_fmod_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_frac(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"frac(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_frac(r.tensor(0)));
} else {
return wrap(dispatch_frac(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_frac_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"frac_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_frac_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_gather(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"gather(Tensor input, int64_t dim, Tensor index, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2)));
} else {
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ge(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ge(Tensor input, Scalar other, *, Tensor out=None)",
"ge(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_ge(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_ge(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_ge(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_ge(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ge_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ge_(Tensor input, Scalar other)",
"ge_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_ge_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_ge_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_gels(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"gels(Tensor input, Tensor A, *, TensorList[2] out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_gels(r.tensor(0), r.tensor(1)));
} else {
auto results = r.tensorlist_n<2>(2);
return wrap(dispatch_gels(r.tensor(0), r.tensor(1), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_geometric_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"geometric_(Tensor input, double p, *, Generator generator=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_geometric_(r.tensor(0), r.toDouble(1), r.generator(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_geqrf(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"geqrf(Tensor input, *, TensorList[2] out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_geqrf(r.tensor(0)));
} else {
auto results = r.tensorlist_n<2>(1);
return wrap(dispatch_geqrf(r.tensor(0), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ger(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ger(Tensor input, Tensor vec2, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_ger(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_ger(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_gesv(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"gesv(Tensor input, Tensor A, *, TensorList[2] out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_gesv(r.tensor(0), r.tensor(1)));
} else {
auto results = r.tensorlist_n<2>(2);
return wrap(dispatch_gesv(r.tensor(0), r.tensor(1), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_get_device(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"get_device(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_get_device(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_gt(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"gt(Tensor input, Scalar other, *, Tensor out=None)",
"gt(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_gt(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_gt(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_gt(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_gt(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_gt_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"gt_(Tensor input, Scalar other)",
"gt_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_gt_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_gt_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_histc(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"histc(Tensor input, int64_t bins=100, Scalar min=0, Scalar max=0, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(4)) {
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3)));
} else {
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index(Tensor input, TensorList indices)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_index(r.tensor(0), r.tensorlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index_add_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index_add_(Tensor input, int64_t dim, Tensor index, Tensor source)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_index_add_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index_copy_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index_copy_(Tensor input, int64_t dim, Tensor index, Tensor source)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_index_copy_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index_fill_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index_fill_(Tensor input, int64_t dim, Tensor index, Scalar value)",
"index_fill_(Tensor input, int64_t dim, Tensor index, Tensor value)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_index_fill_(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3)));
} else if (r.idx == 1) {
return wrap(dispatch_index_fill_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index_put_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index_put_(Tensor input, TensorList indices, Tensor values)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_index_put_(r.tensor(0), r.tensorlist(1), r.tensor(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_index_select(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"index_select(Tensor input, int64_t dim, Tensor index, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2)));
} else {
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_inverse(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"inverse(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_inverse(r.tensor(0)));
} else {
return wrap(dispatch_inverse(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_contiguous(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_contiguous(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_contiguous(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_distributed(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_distributed(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_distributed(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_nonzero(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_nonzero(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_nonzero(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_same_size(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_same_size(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_same_size(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_set_to(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_set_to(Tensor input, Tensor tensor)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_set_to(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_is_signed(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_signed(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_is_signed(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_kthvalue(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"kthvalue(Tensor input, int64_t k, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(4)) {
return wrap(dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3)));
} else {
auto results = r.tensorlist_n<2>(4);
return wrap(dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_le(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"le(Tensor input, Scalar other, *, Tensor out=None)",
"le(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_le(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_le(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_le(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_le(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_le_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"le_(Tensor input, Scalar other)",
"le_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_le_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_le_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lerp(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lerp(Tensor input, Tensor end, Scalar weight, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2)));
} else {
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lerp_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lerp_(Tensor input, Tensor end, Scalar weight)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_lerp_(r.tensor(0), r.tensor(1), r.scalar(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lgamma(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lgamma(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_lgamma(r.tensor(0)));
} else {
return wrap(dispatch_lgamma(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lgamma_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lgamma_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_lgamma_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_linspace(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"linspace(Scalar start, Scalar end, int64_t steps=100, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_linspace(r.scalar(0), r.scalar(1), r.toInt64(2)));
} else {
return wrap(dispatch_linspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_log(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"log(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_log(r.tensor(0)));
} else {
return wrap(dispatch_log(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_log1p(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"log1p(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_log1p(r.tensor(0)));
} else {
return wrap(dispatch_log1p(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_log1p_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"log1p_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_log1p_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_log_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"log_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_log_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_log_normal_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"log_normal_(Tensor input, double mean=1, double std=2, *, Generator generator=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_log_normal_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_logspace(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"logspace(Scalar start, Scalar end, int64_t steps=100, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_logspace(r.scalar(0), r.scalar(1), r.toInt64(2)));
} else {
return wrap(dispatch_logspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lt(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lt(Tensor input, Scalar other, *, Tensor out=None)",
"lt(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_lt(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_lt(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_lt(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_lt(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_lt_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"lt_(Tensor input, Scalar other)",
"lt_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_lt_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_lt_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_masked_fill_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"masked_fill_(Tensor input, Tensor mask, Scalar value)",
"masked_fill_(Tensor input, Tensor mask, Tensor value)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_masked_fill_(r.tensor(0), r.tensor(1), r.scalar(2)));
} else if (r.idx == 1) {
return wrap(dispatch_masked_fill_(r.tensor(0), r.tensor(1), r.tensor(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_masked_scatter_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"masked_scatter_(Tensor input, Tensor mask, Tensor source)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_masked_scatter_(r.tensor(0), r.tensor(1), r.tensor(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_masked_select(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"masked_select(Tensor input, Tensor mask, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_matmul(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"matmul(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_matmul(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_max(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"max(Tensor input)",
"max(Tensor input, Tensor other, *, Tensor out=None)",
"max(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_max(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_max(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_max(r.tensor(0), r.tensor(1), r.tensor(2)));
}
} else if (r.idx == 2) {
if (r.isNone(3)) {
return wrap(dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_max_pool1d(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"max_pool1d(Tensor input, IntList[1] kernel_size, IntList[1] stride=None, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=False)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_max_pool1d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mean(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mean(Tensor input)",
"mean(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_mean(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_mean(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
return wrap(dispatch_mean(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_median(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"median(Tensor input)",
"median(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_median(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_min(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"min(Tensor input)",
"min(Tensor input, Tensor other, *, Tensor out=None)",
"min(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_min(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_min(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_min(r.tensor(0), r.tensor(1), r.tensor(2)));
}
} else if (r.idx == 2) {
if (r.isNone(3)) {
return wrap(dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mm(Tensor input, Tensor mat2, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_mm(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_mm(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mode(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mode(Tensor input, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mul(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mul(Tensor input, Scalar other, *, Tensor out=None)",
"mul(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_mul(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_mul(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_mul(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_mul(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mul_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mul_(Tensor input, Scalar other)",
"mul_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_mul_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_mul_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_multinomial(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"multinomial(Tensor input, int64_t num_samples, bool replacement=False, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(4)) {
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3)));
} else {
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_mv(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"mv(Tensor input, Tensor vec, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_mv(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_mv(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_narrow(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"narrow(Tensor input, int64_t dim, int64_t start, int64_t length)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_narrow(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ne(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ne(Tensor input, Scalar other, *, Tensor out=None)",
"ne(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_ne(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_ne(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_ne(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_ne(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ne_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ne_(Tensor input, Scalar other)",
"ne_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_ne_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_ne_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_neg(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"neg(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_neg(r.tensor(0)));
} else {
return wrap(dispatch_neg(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_neg_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"neg_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_neg_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_nnpack_spatial_convolution(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int64_t kW, int64_t kH, int64_t padW, int64_t padH)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_nnpack_spatial_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_nnpack_spatial_convolution_backward_input(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int64_t kW, int64_t kH, int64_t padW, int64_t padH)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_nnpack_spatial_convolution_backward_input(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_nnpack_spatial_convolution_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"nnpack_spatial_convolution_backward_weight(Tensor input, IntList weight_size, Tensor grad_output, int64_t kW, int64_t kH, int64_t padW, int64_t padH)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_nnpack_spatial_convolution_backward_weight(r.tensor(0), r.intlist(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_nonzero(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"nonzero(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_nonzero(r.tensor(0)));
} else {
return wrap(dispatch_nonzero(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_norm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"norm(Tensor input, Scalar p=2)",
"norm(Tensor input, Scalar p=None, int64_t dim, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_norm(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
if (r.isNone(4)) {
auto self = r.tensor(0);
auto p = r.scalarWithDefault(1, 2);
auto dim = r.toInt64(2);
auto keepdim = r.toBool(3);
return wrap(dispatch_norm(self, p, dim, keepdim));
} else {
auto self = r.tensor(0);
auto p = r.scalarWithDefault(1, 2);
auto dim = r.toInt64(2);
auto keepdim = r.toBool(3);
return wrap(dispatch_norm(self, p, dim, keepdim, r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_normal(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"normal(Tensor mean, Tensor std, *, Generator generator=None, Tensor out=None)",
"normal(Tensor mean, double std=1, *, Generator generator=None, Tensor out=None)",
"normal(double mean, Tensor std, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2)));
} else {
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2), r.tensor(3)));
}
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2)));
} else {
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2), r.tensor(3)));
}
} else if (r.idx == 2) {
if (r.isNone(3)) {
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2)));
} else {
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_normal_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"normal_(Tensor input, double mean=0, double std=1, *, Generator generator=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_normal_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_numel(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"numel(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_numel(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ones(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ones(IntList size, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_ones(r.intlist(0)));
} else {
return wrap(dispatch_ones(r.intlist(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ones_like(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ones_like(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_ones_like(r.tensor(0)));
} else {
return wrap(dispatch_ones_like(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_orgqr(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"orgqr(Tensor input, Tensor input2, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_ormqr(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"ormqr(Tensor input, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor out=None)",
});
PyObject* parsed_args[6];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(5)) {
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4)));
} else {
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4), r.tensor(5)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_permute(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"permute(Tensor input, IntList dims)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_permute(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_pin_memory(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"pin_memory(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_pin_memory(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_polygamma(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"polygamma(int64_t n, Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1)));
} else {
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_polygamma_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"polygamma_(Tensor input, int64_t n)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_polygamma_(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_potrf(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"potrf(Tensor input, bool upper=True, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_potrf(r.tensor(0), r.toBool(1)));
} else {
return wrap(dispatch_potrf(r.tensor(0), r.toBool(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_potri(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"potri(Tensor input, bool upper=True, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_potri(r.tensor(0), r.toBool(1)));
} else {
return wrap(dispatch_potri(r.tensor(0), r.toBool(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_potrs(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"potrs(Tensor input, Tensor input2, bool upper=True, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_potrs(r.tensor(0), r.tensor(1), r.toBool(2)));
} else {
return wrap(dispatch_potrs(r.tensor(0), r.tensor(1), r.toBool(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_pow(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"pow(Tensor input, Scalar exponent, *, Tensor out=None)",
"pow(Tensor input, Tensor exponent, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_pow(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_pow(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_pow(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_pow(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_pow_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"pow_(Tensor input, Scalar exponent)",
"pow_(Tensor input, Tensor exponent)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_pow_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_pow_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_prod(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"prod(Tensor input)",
"prod(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_prod(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_pstrf(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"pstrf(Tensor input, bool upper=True, Scalar tol=-1, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_put_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"put_(Tensor input, Tensor index, Tensor source, bool accumulate=False)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_put_(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_qr(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"qr(Tensor input, *, TensorList[2] out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_qr(r.tensor(0)));
} else {
auto results = r.tensorlist_n<2>(1);
return wrap(dispatch_qr(r.tensor(0), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_rand(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rand(IntList size, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_rand(r.intlist(0), r.generator(1)));
} else {
return wrap(dispatch_rand(r.intlist(0), r.generator(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_randn(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"randn(IntList size, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_randn(r.intlist(0), r.generator(1)));
} else {
return wrap(dispatch_randn(r.intlist(0), r.generator(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_random_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"random_(Tensor input, *, Generator generator=None)",
"random_(Tensor input, int64_t from, int64_t to, *, Generator generator=None)",
"random_(Tensor input, int64_t to, *, Generator generator=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_random_(r.tensor(0), r.generator(1)));
} else if (r.idx == 1) {
return wrap(dispatch_random_(r.tensor(0), r.toInt64(1), r.toInt64(2), r.generator(3)));
} else if (r.idx == 2) {
return wrap(dispatch_random_(r.tensor(0), r.toInt64(1), r.generator(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_randperm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"randperm(int64_t n, *, Generator generator=None, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_randperm(r.toInt64(0), r.generator(1)));
} else {
return wrap(dispatch_randperm(r.toInt64(0), r.generator(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_range(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"range(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2)));
} else {
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_reciprocal(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"reciprocal(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_reciprocal(r.tensor(0)));
} else {
return wrap(dispatch_reciprocal(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_reciprocal_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"reciprocal_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_reciprocal_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_remainder(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"remainder(Tensor input, Scalar other, *, Tensor out=None)",
"remainder(Tensor input, Tensor other, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1)));
} else {
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1), r.tensor(2)));
}
} else if (r.idx == 1) {
if (r.isNone(2)) {
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_remainder_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"remainder_(Tensor input, Scalar other)",
"remainder_(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_remainder_(r.tensor(0), r.scalar(1)));
} else if (r.idx == 1) {
return wrap(dispatch_remainder_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_renorm(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"renorm(Tensor input, Scalar p, int64_t dim, Scalar maxnorm, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(4)) {
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3)));
} else {
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_renorm_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"renorm_(Tensor input, Scalar p, int64_t dim, Scalar maxnorm)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_renorm_(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_reshape_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"reshape_(Tensor input, IntList size, IntList stride)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_reshape_(r.tensor(0), r.intlist(1), r.intlist(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_resize_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"resize_(Tensor input, IntList size)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_resize_(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_resize_as_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"resize_as_(Tensor input, Tensor the_template)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_resize_as_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_round(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"round(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_round(r.tensor(0)));
} else {
return wrap(dispatch_round(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_round_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"round_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_round_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_rrelu(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rrelu(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_rrelu(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_rrelu_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rrelu_(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_rrelu_(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_rsqrt(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rsqrt(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_rsqrt(r.tensor(0)));
} else {
return wrap(dispatch_rsqrt(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_rsqrt_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rsqrt_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_rsqrt_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_scatter_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"scatter_(Tensor input, int64_t dim, Tensor index, Scalar value)",
"scatter_(Tensor input, int64_t dim, Tensor index, Tensor src)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_scatter_(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3)));
} else if (r.idx == 1) {
return wrap(dispatch_scatter_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_scatter_add_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"scatter_add_(Tensor input, int64_t dim, Tensor index, Tensor src)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_scatter_add_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_select(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"select(Tensor input, int64_t dim, int64_t index)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_select(r.tensor(0), r.toInt64(1), r.toInt64(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_selu(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"selu(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_selu(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_selu_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"selu_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_selu_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_set_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"set_(Tensor input)",
"set_(Tensor input, Storage sourceStorage, int64_t storage_offset, IntList size, IntList stride=None)",
"set_(Tensor input, Storage storage)",
"set_(Tensor input, Tensor source)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_set_(r.tensor(0)));
} else if (r.idx == 1) {
return wrap(dispatch_set_(r.tensor(0), *r.storage(1), r.toInt64(2), r.intlist(3), r.intlist(4)));
} else if (r.idx == 2) {
return wrap(dispatch_set_(r.tensor(0), *r.storage(1)));
} else if (r.idx == 3) {
return wrap(dispatch_set_(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sigmoid(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sigmoid(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_sigmoid(r.tensor(0)));
} else {
return wrap(dispatch_sigmoid(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sigmoid_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sigmoid_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sigmoid_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sign(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sign(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_sign(r.tensor(0)));
} else {
return wrap(dispatch_sign(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sign_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sign_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sign_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sin(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sin(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_sin(r.tensor(0)));
} else {
return wrap(dispatch_sin(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sin_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sin_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sin_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sinh(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sinh(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_sinh(r.tensor(0)));
} else {
return wrap(dispatch_sinh(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sinh_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sinh_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sinh_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_slice(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"slice(Tensor input, int64_t dim=0, int64_t start=0, int64_t end=9223372036854775807, int64_t step=1)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_slice(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sort(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sort(Tensor input, int64_t dim=-1, bool descending=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sparse_coo_tensor(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sparse_coo_tensor(Tensor indices, Tensor values, IntList size)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_split(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"split(Tensor input, int64_t split_size, int64_t dim=0)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_split(r.tensor(0), r.toInt64(1), r.toInt64(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sqrt(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sqrt(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_sqrt(r.tensor(0)));
} else {
return wrap(dispatch_sqrt(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sqrt_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sqrt_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sqrt_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_squeeze(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"squeeze(Tensor input)",
"squeeze(Tensor input, int64_t dim)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_squeeze(r.tensor(0)));
} else if (r.idx == 1) {
return wrap(dispatch_squeeze(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_squeeze_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"squeeze_(Tensor input)",
"squeeze_(Tensor input, int64_t dim)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_squeeze_(r.tensor(0)));
} else if (r.idx == 1) {
return wrap(dispatch_squeeze_(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_stack(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"stack(TensorList tensors, int64_t dim=0)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_stack(r.tensorlist(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_std(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"std(Tensor input, bool unbiased=True)",
"std(Tensor input, int64_t dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_std(r.tensor(0), r.toBool(1)));
} else if (r.idx == 1) {
if (r.isNone(4)) {
return wrap(dispatch_std(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3)));
} else {
return wrap(dispatch_std(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_stft(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"stft(Tensor input, int64_t frame_length, int64_t hop, int64_t fft_size=None, bool return_onesided=True, Tensor window=None, int64_t pad_end=0)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto self = r.tensor(0);
auto frame_length = r.toInt64(1);
auto hop = r.toInt64(2);
auto fft_size = r.toInt64WithDefault(3, frame_length);
auto return_onesided = r.toBool(4);
auto window = r.tensor(5);
auto pad_end = r.toInt64(6);
return wrap(dispatch_stft(self, frame_length, hop, fft_size, return_onesided, window, pad_end));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_storage_offset(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"storage_offset(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_storage_offset(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sub(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sub(Tensor input, Scalar alpha, Tensor other)|deprecated",
"sub(Tensor input, Scalar other, *, Scalar alpha=1, Tensor out=None)",
"sub(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.tensor(2)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.scalar(2)));
} else {
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.scalar(2), r.tensor(3)));
}
} else if (r.idx == 2) {
if (r.isNone(3)) {
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2)));
} else {
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sub_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sub_(Tensor input, Scalar alpha, Tensor other)|deprecated",
"sub_(Tensor input, Scalar other, *, Scalar alpha=1)",
"sub_(Tensor input, Tensor other, *, Scalar alpha=1)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sub_(r.tensor(0), r.scalar(1), r.tensor(2)));
} else if (r.idx == 1) {
return wrap(dispatch_sub_(r.tensor(0), r.scalar(1), r.scalar(2)));
} else if (r.idx == 2) {
return wrap(dispatch_sub_(r.tensor(0), r.tensor(1), r.scalar(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_sum(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"sum(Tensor input)",
"sum(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_sum(r.tensor(0)));
} else if (r.idx == 1) {
if (r.isNone(3)) {
return wrap(dispatch_sum(r.tensor(0), r.toInt64(1), r.toBool(2)));
} else {
return wrap(dispatch_sum(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_svd(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"svd(Tensor input, bool some=True, *, TensorList[3] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_svd(r.tensor(0), r.toBool(1)));
} else {
auto results = r.tensorlist_n<3>(2);
return wrap(dispatch_svd(r.tensor(0), r.toBool(1), results[0], results[1], results[2]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_symeig(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"symeig(Tensor input, bool eigenvectors=False, bool upper=True, *, TensorList[2] out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(3)) {
return wrap(dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2)));
} else {
auto results = r.tensorlist_n<2>(3);
return wrap(dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_t(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"t(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_t(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_t_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"t_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_t_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_take(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"take(Tensor input, Tensor index, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_take(r.tensor(0), r.tensor(1)));
} else {
return wrap(dispatch_take(r.tensor(0), r.tensor(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tan(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tan(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_tan(r.tensor(0)));
} else {
return wrap(dispatch_tan(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tan_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tan_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_tan_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tanh(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tanh(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_tanh(r.tensor(0)));
} else {
return wrap(dispatch_tanh(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tanh_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tanh_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_tanh_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tensor(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tensor()",
"tensor(IntList size)",
"tensor(IntList size, IntList stride)",
"tensor(Storage storage, int64_t storageOffset, IntList size, IntList stride=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_tensor());
} else if (r.idx == 1) {
return wrap(dispatch_tensor(r.intlist(0)));
} else if (r.idx == 2) {
return wrap(dispatch_tensor(r.intlist(0), r.intlist(1)));
} else if (r.idx == 3) {
return wrap(dispatch_tensor(*r.storage(0), r.toInt64(1), r.intlist(2), r.intlist(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_topk(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"topk(Tensor input, int64_t k, int64_t dim=-1, bool largest=True, bool sorted=True, *, TensorList[2] out=None)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(5)) {
return wrap(dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4)));
} else {
auto results = r.tensorlist_n<2>(5);
return wrap(dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_trace(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"trace(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_trace(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_transpose(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"transpose(Tensor input, int64_t dim0, int64_t dim1)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_transpose(r.tensor(0), r.toInt64(1), r.toInt64(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_transpose_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"transpose_(Tensor input, int64_t dim0, int64_t dim1)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_transpose_(r.tensor(0), r.toInt64(1), r.toInt64(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tril(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tril(Tensor input, int64_t diagonal=0, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1)));
} else {
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tril_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"tril_(Tensor input, int64_t diagonal=0)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_tril_(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_triu(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"triu(Tensor input, int64_t diagonal=0, *, Tensor out=None)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(2)) {
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1)));
} else {
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1), r.tensor(2)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_triu_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"triu_(Tensor input, int64_t diagonal=0)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_triu_(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_trtrs(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"trtrs(Tensor input, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, TensorList[2] out=None)",
});
PyObject* parsed_args[7];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(5)) {
return wrap(dispatch_trtrs(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4)));
} else {
auto results = r.tensorlist_n<2>(5);
return wrap(dispatch_trtrs(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4), results[0], results[1]));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_trunc(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"trunc(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_trunc(r.tensor(0)));
} else {
return wrap(dispatch_trunc(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_trunc_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"trunc_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_trunc_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_type_as(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"type_as(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_type_as(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_unfold(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"unfold(Tensor input, int64_t dimension, int64_t size, int64_t step)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_unfold(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_uniform_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"uniform_(Tensor input, double from=0, double to=1, *, Generator generator=None)",
});
PyObject* parsed_args[4];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_uniform_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_unsqueeze(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"unsqueeze(Tensor input, int64_t dim)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_unsqueeze(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_unsqueeze_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"unsqueeze_(Tensor input, int64_t dim)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_unsqueeze_(r.tensor(0), r.toInt64(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_var(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"var(Tensor input, bool unbiased=True)",
"var(Tensor input, int64_t dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)",
});
PyObject* parsed_args[5];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_var(r.tensor(0), r.toBool(1)));
} else if (r.idx == 1) {
if (r.isNone(4)) {
return wrap(dispatch_var(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3)));
} else {
return wrap(dispatch_var(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.tensor(4)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_view(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"view(Tensor input, IntList size)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_view(r.tensor(0), r.intlist(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_view_as(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"view_as(Tensor input, Tensor other)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_view_as(r.tensor(0), r.tensor(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_where(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"where(Tensor condition, Tensor input, Tensor other)",
});
PyObject* parsed_args[3];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_where(r.tensor(0), r.tensor(1), r.tensor(2)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_zero_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"zero_(Tensor input)",
});
PyObject* parsed_args[1];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_zero_(r.tensor(0)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_zeros(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"zeros(IntList size, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_zeros(r.intlist(0)));
} else {
return wrap(dispatch_zeros(r.intlist(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_zeros_like(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"zeros_like(Tensor input, *, Tensor out=None)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (r.isNone(1)) {
return wrap(dispatch_zeros_like(r.tensor(0)));
} else {
return wrap(dispatch_zeros_like(r.tensor(0), r.tensor(1)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyMethodDef torch_functions[] = {
{"clamp", (PyCFunction)THPVariable_clamp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"from_numpy", (PyCFunction)THPVariable_from_numpy, METH_STATIC | METH_O, NULL},
{"__and__", (PyCFunction)THPVariable___and__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__iand__", (PyCFunction)THPVariable___iand__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__ilshift__", (PyCFunction)THPVariable___ilshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__ior__", (PyCFunction)THPVariable___ior__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__irshift__", (PyCFunction)THPVariable___irshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__ixor__", (PyCFunction)THPVariable___ixor__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__lshift__", (PyCFunction)THPVariable___lshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__or__", (PyCFunction)THPVariable___or__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__rshift__", (PyCFunction)THPVariable___rshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__xor__", (PyCFunction)THPVariable___xor__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_convolution", (PyCFunction)THPVariable__convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_convolution_nogroup", (PyCFunction)THPVariable__convolution_nogroup, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_copy_ignoring_overlaps_", (PyCFunction)THPVariable__copy_ignoring_overlaps_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_det_with_svd", (PyCFunction)THPVariable__det_with_svd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_indices", (PyCFunction)THPVariable__indices, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_s_where", (PyCFunction)THPVariable__s_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_sparse_mask", (PyCFunction)THPVariable__sparse_mask, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_standard_gamma", (PyCFunction)THPVariable__standard_gamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_standard_gamma_grad", (PyCFunction)THPVariable__standard_gamma_grad, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_values", (PyCFunction)THPVariable__values, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"abs", (PyCFunction)THPVariable_abs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"abs_", (PyCFunction)THPVariable_abs_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"acos", (PyCFunction)THPVariable_acos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"acos_", (PyCFunction)THPVariable_acos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"adaptive_avg_pool1d", (PyCFunction)THPVariable_adaptive_avg_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"adaptive_max_pool1d", (PyCFunction)THPVariable_adaptive_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"add", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"add_", (PyCFunction)THPVariable_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addbmm", (PyCFunction)THPVariable_addbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addbmm_", (PyCFunction)THPVariable_addbmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addcdiv", (PyCFunction)THPVariable_addcdiv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addcdiv_", (PyCFunction)THPVariable_addcdiv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addcmul", (PyCFunction)THPVariable_addcmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addcmul_", (PyCFunction)THPVariable_addcmul_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addmm", (PyCFunction)THPVariable_addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addmm_", (PyCFunction)THPVariable_addmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addmv", (PyCFunction)THPVariable_addmv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addmv_", (PyCFunction)THPVariable_addmv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addr", (PyCFunction)THPVariable_addr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"addr_", (PyCFunction)THPVariable_addr_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"all", (PyCFunction)THPVariable_all, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"allclose", (PyCFunction)THPVariable_allclose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"any", (PyCFunction)THPVariable_any, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"arange", (PyCFunction)THPVariable_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"as_strided", (PyCFunction)THPVariable_as_strided, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"as_strided_", (PyCFunction)THPVariable_as_strided_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"asin", (PyCFunction)THPVariable_asin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"asin_", (PyCFunction)THPVariable_asin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"atan", (PyCFunction)THPVariable_atan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"atan2", (PyCFunction)THPVariable_atan2, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"atan2_", (PyCFunction)THPVariable_atan2_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"atan_", (PyCFunction)THPVariable_atan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"baddbmm", (PyCFunction)THPVariable_baddbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"baddbmm_", (PyCFunction)THPVariable_baddbmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"batch_norm", (PyCFunction)THPVariable_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"bernoulli", (PyCFunction)THPVariable_bernoulli, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"bernoulli_", (PyCFunction)THPVariable_bernoulli_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"bmm", (PyCFunction)THPVariable_bmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"btrifact", (PyCFunction)THPVariable_btrifact, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"btrifact_with_info", (PyCFunction)THPVariable_btrifact_with_info, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"btrisolve", (PyCFunction)THPVariable_btrisolve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cat", (PyCFunction)THPVariable_cat, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cauchy_", (PyCFunction)THPVariable_cauchy_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ceil", (PyCFunction)THPVariable_ceil, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ceil_", (PyCFunction)THPVariable_ceil_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"chunk", (PyCFunction)THPVariable_chunk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"clone", (PyCFunction)THPVariable_clone, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv1d", (PyCFunction)THPVariable_conv1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv2d", (PyCFunction)THPVariable_conv2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv3d", (PyCFunction)THPVariable_conv3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv_tbc", (PyCFunction)THPVariable_conv_tbc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv_transpose1d", (PyCFunction)THPVariable_conv_transpose1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv_transpose2d", (PyCFunction)THPVariable_conv_transpose2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"conv_transpose3d", (PyCFunction)THPVariable_conv_transpose3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"convolution", (PyCFunction)THPVariable_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cos", (PyCFunction)THPVariable_cos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cos_", (PyCFunction)THPVariable_cos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cosh", (PyCFunction)THPVariable_cosh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cosh_", (PyCFunction)THPVariable_cosh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cross", (PyCFunction)THPVariable_cross, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_affine_grid_generator", (PyCFunction)THPVariable_cudnn_affine_grid_generator, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_batch_norm", (PyCFunction)THPVariable_cudnn_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution", (PyCFunction)THPVariable_cudnn_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_backward_bias", (PyCFunction)THPVariable_cudnn_convolution_backward_bias, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_backward_input", (PyCFunction)THPVariable_cudnn_convolution_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_backward_weight", (PyCFunction)THPVariable_cudnn_convolution_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_transpose", (PyCFunction)THPVariable_cudnn_convolution_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_transpose_backward_bias", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_bias, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_transpose_backward_input", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_convolution_transpose_backward_weight", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cudnn_grid_sampler", (PyCFunction)THPVariable_cudnn_grid_sampler, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cumprod", (PyCFunction)THPVariable_cumprod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"cumsum", (PyCFunction)THPVariable_cumsum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"data_ptr", (PyCFunction)THPVariable_data_ptr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"det", (PyCFunction)THPVariable_det, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"diag", (PyCFunction)THPVariable_diag, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"digamma", (PyCFunction)THPVariable_digamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"digamma_", (PyCFunction)THPVariable_digamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"dist", (PyCFunction)THPVariable_dist, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"div", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"div_", (PyCFunction)THPVariable_div_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"dot", (PyCFunction)THPVariable_dot, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"eig", (PyCFunction)THPVariable_eig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"embedding", (PyCFunction)THPVariable_embedding, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"embedding_renorm_", (PyCFunction)THPVariable_embedding_renorm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"eq", (PyCFunction)THPVariable_eq, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"eq_", (PyCFunction)THPVariable_eq_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"equal", (PyCFunction)THPVariable_equal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"erf", (PyCFunction)THPVariable_erf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"erf_", (PyCFunction)THPVariable_erf_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"erfinv", (PyCFunction)THPVariable_erfinv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"erfinv_", (PyCFunction)THPVariable_erfinv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"exp", (PyCFunction)THPVariable_exp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"exp_", (PyCFunction)THPVariable_exp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"expand", (PyCFunction)THPVariable_expand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"expand_as", (PyCFunction)THPVariable_expand_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"expm1", (PyCFunction)THPVariable_expm1, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"expm1_", (PyCFunction)THPVariable_expm1_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"exponential_", (PyCFunction)THPVariable_exponential_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"eye", (PyCFunction)THPVariable_eye, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"fill_", (PyCFunction)THPVariable_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"floor", (PyCFunction)THPVariable_floor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"floor_", (PyCFunction)THPVariable_floor_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"fmod", (PyCFunction)THPVariable_fmod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"fmod_", (PyCFunction)THPVariable_fmod_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"frac", (PyCFunction)THPVariable_frac, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"frac_", (PyCFunction)THPVariable_frac_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"gather", (PyCFunction)THPVariable_gather, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ge", (PyCFunction)THPVariable_ge, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ge_", (PyCFunction)THPVariable_ge_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"gels", (PyCFunction)THPVariable_gels, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"geometric_", (PyCFunction)THPVariable_geometric_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"geqrf", (PyCFunction)THPVariable_geqrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ger", (PyCFunction)THPVariable_ger, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"gesv", (PyCFunction)THPVariable_gesv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"get_device", (PyCFunction)THPVariable_get_device, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"gt", (PyCFunction)THPVariable_gt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"gt_", (PyCFunction)THPVariable_gt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"histc", (PyCFunction)THPVariable_histc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index", (PyCFunction)THPVariable_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index_add_", (PyCFunction)THPVariable_index_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index_copy_", (PyCFunction)THPVariable_index_copy_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index_fill_", (PyCFunction)THPVariable_index_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index_put_", (PyCFunction)THPVariable_index_put_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"index_select", (PyCFunction)THPVariable_index_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"inverse", (PyCFunction)THPVariable_inverse, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_contiguous", (PyCFunction)THPVariable_is_contiguous, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_distributed", (PyCFunction)THPVariable_is_distributed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_nonzero", (PyCFunction)THPVariable_is_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_same_size", (PyCFunction)THPVariable_is_same_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_set_to", (PyCFunction)THPVariable_is_set_to, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"is_signed", (PyCFunction)THPVariable_is_signed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"kthvalue", (PyCFunction)THPVariable_kthvalue, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"le", (PyCFunction)THPVariable_le, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"le_", (PyCFunction)THPVariable_le_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lerp", (PyCFunction)THPVariable_lerp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lerp_", (PyCFunction)THPVariable_lerp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lgamma", (PyCFunction)THPVariable_lgamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lgamma_", (PyCFunction)THPVariable_lgamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"linspace", (PyCFunction)THPVariable_linspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"log", (PyCFunction)THPVariable_log, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"log1p", (PyCFunction)THPVariable_log1p, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"log1p_", (PyCFunction)THPVariable_log1p_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"log_", (PyCFunction)THPVariable_log_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"log_normal_", (PyCFunction)THPVariable_log_normal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"logspace", (PyCFunction)THPVariable_logspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lt", (PyCFunction)THPVariable_lt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"lt_", (PyCFunction)THPVariable_lt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"masked_fill_", (PyCFunction)THPVariable_masked_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"masked_scatter_", (PyCFunction)THPVariable_masked_scatter_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"masked_select", (PyCFunction)THPVariable_masked_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"matmul", (PyCFunction)THPVariable_matmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"max", (PyCFunction)THPVariable_max, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"max_pool1d", (PyCFunction)THPVariable_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mean", (PyCFunction)THPVariable_mean, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"median", (PyCFunction)THPVariable_median, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"min", (PyCFunction)THPVariable_min, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mode", (PyCFunction)THPVariable_mode, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mul", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mul_", (PyCFunction)THPVariable_mul_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"multinomial", (PyCFunction)THPVariable_multinomial, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"mv", (PyCFunction)THPVariable_mv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"narrow", (PyCFunction)THPVariable_narrow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ne", (PyCFunction)THPVariable_ne, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ne_", (PyCFunction)THPVariable_ne_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"neg", (PyCFunction)THPVariable_neg, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"neg_", (PyCFunction)THPVariable_neg_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nnpack_spatial_convolution", (PyCFunction)THPVariable_nnpack_spatial_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nnpack_spatial_convolution_backward_input", (PyCFunction)THPVariable_nnpack_spatial_convolution_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nnpack_spatial_convolution_backward_weight", (PyCFunction)THPVariable_nnpack_spatial_convolution_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nonzero", (PyCFunction)THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"norm", (PyCFunction)THPVariable_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"normal", (PyCFunction)THPVariable_normal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"normal_", (PyCFunction)THPVariable_normal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"numel", (PyCFunction)THPVariable_numel, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ones", (PyCFunction)THPVariable_ones, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ones_like", (PyCFunction)THPVariable_ones_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"orgqr", (PyCFunction)THPVariable_orgqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"ormqr", (PyCFunction)THPVariable_ormqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"permute", (PyCFunction)THPVariable_permute, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"pin_memory", (PyCFunction)THPVariable_pin_memory, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"polygamma", (PyCFunction)THPVariable_polygamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"polygamma_", (PyCFunction)THPVariable_polygamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"potrf", (PyCFunction)THPVariable_potrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"potri", (PyCFunction)THPVariable_potri, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"potrs", (PyCFunction)THPVariable_potrs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"pow", (PyCFunction)THPVariable_pow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"pow_", (PyCFunction)THPVariable_pow_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"prod", (PyCFunction)THPVariable_prod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"pstrf", (PyCFunction)THPVariable_pstrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"put_", (PyCFunction)THPVariable_put_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"qr", (PyCFunction)THPVariable_qr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rand", (PyCFunction)THPVariable_rand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randn", (PyCFunction)THPVariable_randn, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"random_", (PyCFunction)THPVariable_random_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randperm", (PyCFunction)THPVariable_randperm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"range", (PyCFunction)THPVariable_range, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"reciprocal", (PyCFunction)THPVariable_reciprocal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"reciprocal_", (PyCFunction)THPVariable_reciprocal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"remainder", (PyCFunction)THPVariable_remainder, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"remainder_", (PyCFunction)THPVariable_remainder_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"renorm", (PyCFunction)THPVariable_renorm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"renorm_", (PyCFunction)THPVariable_renorm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"reshape_", (PyCFunction)THPVariable_reshape_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"resize_", (PyCFunction)THPVariable_resize_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"resize_as_", (PyCFunction)THPVariable_resize_as_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"round", (PyCFunction)THPVariable_round, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"round_", (PyCFunction)THPVariable_round_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rrelu", (PyCFunction)THPVariable_rrelu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rrelu_", (PyCFunction)THPVariable_rrelu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rsqrt", (PyCFunction)THPVariable_rsqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rsqrt_", (PyCFunction)THPVariable_rsqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"scatter_", (PyCFunction)THPVariable_scatter_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"scatter_add_", (PyCFunction)THPVariable_scatter_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"select", (PyCFunction)THPVariable_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"selu", (PyCFunction)THPVariable_selu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"selu_", (PyCFunction)THPVariable_selu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"set_", (PyCFunction)THPVariable_set_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sigmoid", (PyCFunction)THPVariable_sigmoid, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sigmoid_", (PyCFunction)THPVariable_sigmoid_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sign", (PyCFunction)THPVariable_sign, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sign_", (PyCFunction)THPVariable_sign_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sin", (PyCFunction)THPVariable_sin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sin_", (PyCFunction)THPVariable_sin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sinh", (PyCFunction)THPVariable_sinh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sinh_", (PyCFunction)THPVariable_sinh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"slice", (PyCFunction)THPVariable_slice, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sort", (PyCFunction)THPVariable_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sparse_coo_tensor", (PyCFunction)THPVariable_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"split", (PyCFunction)THPVariable_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sqrt", (PyCFunction)THPVariable_sqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sqrt_", (PyCFunction)THPVariable_sqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"squeeze", (PyCFunction)THPVariable_squeeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"squeeze_", (PyCFunction)THPVariable_squeeze_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"stack", (PyCFunction)THPVariable_stack, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"std", (PyCFunction)THPVariable_std, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"stft", (PyCFunction)THPVariable_stft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"storage_offset", (PyCFunction)THPVariable_storage_offset, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sub", (PyCFunction)THPVariable_sub, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sub_", (PyCFunction)THPVariable_sub_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sum", (PyCFunction)THPVariable_sum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"svd", (PyCFunction)THPVariable_svd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"symeig", (PyCFunction)THPVariable_symeig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"t", (PyCFunction)THPVariable_t, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"t_", (PyCFunction)THPVariable_t_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"take", (PyCFunction)THPVariable_take, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tan", (PyCFunction)THPVariable_tan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tan_", (PyCFunction)THPVariable_tan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tanh", (PyCFunction)THPVariable_tanh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tanh_", (PyCFunction)THPVariable_tanh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tensor", (PyCFunction)THPVariable_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"topk", (PyCFunction)THPVariable_topk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"trace", (PyCFunction)THPVariable_trace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"transpose", (PyCFunction)THPVariable_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"transpose_", (PyCFunction)THPVariable_transpose_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tril", (PyCFunction)THPVariable_tril, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tril_", (PyCFunction)THPVariable_tril_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"triu", (PyCFunction)THPVariable_triu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"triu_", (PyCFunction)THPVariable_triu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"trtrs", (PyCFunction)THPVariable_trtrs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"trunc", (PyCFunction)THPVariable_trunc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"trunc_", (PyCFunction)THPVariable_trunc_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"type_as", (PyCFunction)THPVariable_type_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"unfold", (PyCFunction)THPVariable_unfold, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"uniform_", (PyCFunction)THPVariable_uniform_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"unsqueeze", (PyCFunction)THPVariable_unsqueeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"unsqueeze_", (PyCFunction)THPVariable_unsqueeze_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"var", (PyCFunction)THPVariable_var, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"view", (PyCFunction)THPVariable_view, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"view_as", (PyCFunction)THPVariable_view_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"where", (PyCFunction)THPVariable_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"zero_", (PyCFunction)THPVariable_zero_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"zeros", (PyCFunction)THPVariable_zeros, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"zeros_like", (PyCFunction)THPVariable_zeros_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{NULL}
};
static PyTypeObject THPVariableFunctions = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C._VariableFunctions", /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
NULL, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
torch_functions, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0 /* tp_new */
};
void initTorchFunctions(PyObject* module) {
if (PyType_Ready(&THPVariableFunctions) < 0) {
throw python_error();
}
Py_INCREF(&THPVariableFunctions);
if (PyModule_AddObject(module, "_VariableFunctions", (PyObject*)&THPVariableFunctions) < 0) {
throw python_error();
}
}
}} // namespace torch::autograd
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment