Last active
January 17, 2018 17:14
-
-
Save colesbury/d8716729a91d378927cd57966de15c9f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// generated from tools/autograd/templates/python_torch_functions.cpp | |
// Python bindings for torch.* functions implemented through ATen. | |
// | |
// The functions are bound as static methods on a class | |
// torch._C._VariableFunctions which is also aliased as Variable._torch. | |
#include <Python.h> | |
#include "torch/csrc/Exceptions.h" | |
#include "torch/csrc/autograd/python_variable.h" | |
#include "torch/csrc/autograd/utils/wrap_outputs.h" | |
#include "torch/csrc/utils/python_arg_parser.h" | |
#include "torch/csrc/utils/tensor_numpy.h" | |
#include "python_torch_functions_dispatch.h" | |
using at::Tensor; | |
using at::Scalar; | |
using at::ScalarType; | |
using at::Backend; | |
using namespace torch::autograd::utils; | |
namespace torch { namespace autograd { | |
static Tensor dispatch_clamp(const Tensor & self, Scalar min, Scalar max) { | |
AutoNoGIL no_gil; | |
AutoGPU auto_gpu(self); | |
return self.clamp(min, max); | |
} | |
static Tensor dispatch_clamp_min(const Tensor & self, Scalar min) { | |
AutoNoGIL no_gil; | |
AutoGPU auto_gpu(self); | |
return self.clamp_min(min); | |
} | |
static Tensor dispatch_clamp_max(const Tensor & self, Scalar max) { | |
AutoNoGIL no_gil; | |
AutoGPU auto_gpu(self); | |
return self.clamp_max(max); | |
} | |
// The Python clamp() syntax has to be mapped to one of three C++ functions | |
static PyObject * THPVariable_clamp(PyObject* module, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp(Tensor input, Scalar min=None, Scalar max=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (!r.isNone(1) && !r.isNone(2)) { | |
return THPVariable_Wrap(dispatch_clamp(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else if (!r.isNone(1)) { | |
return THPVariable_Wrap(dispatch_clamp_min(r.tensor(0), r.scalar(1))); | |
} else if (!r.isNone(2)) { | |
return THPVariable_Wrap(dispatch_clamp_max(r.tensor(0), r.scalar(2))); | |
} else { | |
throw std::runtime_error("At least one of 'min' or 'max' must not be None"); | |
} | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_from_numpy(PyObject* module, PyObject* arg) | |
{ | |
HANDLE_TH_ERRORS | |
auto data = torch::utils::tensor_from_numpy(arg); | |
return THPVariable_Wrap(make_variable(std::move(data))); | |
END_HANDLE_TH_ERRORS | |
} | |
// generated methods start here | |
static PyObject * THPVariable___and__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__and__(Tensor input, Scalar other, *, Tensor out=None)", | |
"__and__(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___and__(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch___and__(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___and__(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch___and__(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___iand__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__iand__(Tensor input, Scalar other)", | |
"__iand__(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___iand__(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___iand__(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___ilshift__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__ilshift__(Tensor input, Scalar other)", | |
"__ilshift__(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___ilshift__(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___ilshift__(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___ior__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__ior__(Tensor input, Scalar other)", | |
"__ior__(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___ior__(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___ior__(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___irshift__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__irshift__(Tensor input, Scalar other)", | |
"__irshift__(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___irshift__(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___irshift__(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___ixor__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__ixor__(Tensor input, Scalar other)", | |
"__ixor__(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___ixor__(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___ixor__(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___lshift__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__lshift__(Tensor input, Scalar other, *, Tensor out=None)", | |
"__lshift__(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___lshift__(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch___lshift__(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___lshift__(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch___lshift__(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___or__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__or__(Tensor input, Scalar other, *, Tensor out=None)", | |
"__or__(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___or__(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch___or__(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___or__(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch___or__(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___rshift__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__rshift__(Tensor input, Scalar other, *, Tensor out=None)", | |
"__rshift__(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___rshift__(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch___rshift__(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___rshift__(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch___rshift__(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___xor__(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__xor__(Tensor input, Scalar other, *, Tensor out=None)", | |
"__xor__(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___xor__(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch___xor__(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch___xor__(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch___xor__(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__convolution(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled)", | |
}); | |
PyObject* parsed_args[12]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8), r.toBool(9), r.toBool(10), r.toBool(11))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__convolution_nogroup(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_convolution_nogroup(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__convolution_nogroup(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__copy_ignoring_overlaps_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_copy_ignoring_overlaps_(Tensor input, Tensor src)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__copy_ignoring_overlaps_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__det_with_svd(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_det_with_svd(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__det_with_svd(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__indices(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_indices(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__indices(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__s_where(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_s_where(Tensor condition, Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__s_where(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sparse_mask(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sparse_mask(Tensor input, Tensor mask)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sparse_mask(r.tensor(0), SparseTensor(r.tensor(1)))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__standard_gamma(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_standard_gamma(Tensor input, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch__standard_gamma(r.tensor(0), r.generator(1))); | |
} else { | |
return wrap(dispatch__standard_gamma(r.tensor(0), r.generator(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__standard_gamma_grad(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_standard_gamma_grad(Tensor input, Tensor output)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__standard_gamma_grad(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__values(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_values(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__values(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_abs(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"abs(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_abs(r.tensor(0))); | |
} else { | |
return wrap(dispatch_abs(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_abs_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"abs_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_abs_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_acos(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"acos(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_acos(r.tensor(0))); | |
} else { | |
return wrap(dispatch_acos(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_acos_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"acos_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_acos_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_adaptive_avg_pool1d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"adaptive_avg_pool1d(Tensor input, IntList[1] output_size)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_adaptive_avg_pool1d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_adaptive_max_pool1d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"adaptive_max_pool1d(Tensor input, IntList[1] output_size)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_adaptive_max_pool1d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_add(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"add(Tensor input, Scalar alpha, Tensor other)|deprecated", | |
"add(Tensor input, Scalar other, *, Scalar alpha=1, Tensor out=None)", | |
"add(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.scalar(2), r.tensor(3))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_add_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"add_(Tensor input, Scalar alpha, Tensor other)|deprecated", | |
"add_(Tensor input, Scalar other, *, Scalar alpha=1)", | |
"add_(Tensor input, Tensor other, *, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_add_(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_add_(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_add_(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addbmm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated", | |
"addbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated", | |
"addbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addbmm_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addbmm_(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated", | |
"addbmm_(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated", | |
"addbmm_(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addbmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addbmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_addbmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcdiv(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcdiv(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated", | |
"addcdiv(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcdiv_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcdiv_(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated", | |
"addcdiv_(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addcdiv_(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addcdiv_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcmul(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcmul(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated", | |
"addcmul(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addcmul(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcmul_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcmul_(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2)|deprecated", | |
"addcmul_(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addcmul_(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addcmul_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmm(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2)|deprecated", | |
"addmm(Scalar beta, Tensor input, Tensor mat1, Tensor mat2)|deprecated", | |
"addmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmm_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmm_(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2)|deprecated", | |
"addmm_(Scalar beta, Tensor input, Tensor mat1, Tensor mat2)|deprecated", | |
"addmm_(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_addmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmv(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmv(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec)|deprecated", | |
"addmv(Scalar beta, Tensor input, Tensor mat, Tensor vec)|deprecated", | |
"addmv(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmv_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmv_(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec)|deprecated", | |
"addmv_(Scalar beta, Tensor input, Tensor mat, Tensor vec)|deprecated", | |
"addmv_(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_addmv_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addr(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addr(Scalar beta, Tensor input, Scalar alpha, Tensor vec1, Tensor vec2)|deprecated", | |
"addr(Scalar beta, Tensor input, Tensor vec1, Tensor vec2)|deprecated", | |
"addr(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addr_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addr_(Scalar beta, Tensor input, Scalar alpha, Tensor vec1, Tensor vec2)|deprecated", | |
"addr_(Scalar beta, Tensor input, Tensor vec1, Tensor vec2)|deprecated", | |
"addr_(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addr_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addr_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_addr_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_all(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"all(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_all(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_allclose(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"allclose(Tensor input, Tensor other, double rtol=1e-05, double atol=1e-08)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_allclose(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_any(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"any(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_any(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_arange(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"arange(Scalar end, *, Tensor out=None)", | |
"arange(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_arange(r.scalar(0))); | |
} else { | |
return wrap(dispatch_arange(r.scalar(0), r.tensor(1))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_arange(r.scalar(0), r.scalar(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_arange(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_as_strided(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"as_strided(Tensor input, IntList size, IntList stride, int64_t storage_offset=-1, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_as_strided(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3))); | |
} else { | |
return wrap(dispatch_as_strided(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_as_strided_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"as_strided_(Tensor input, IntList size, IntList stride, int64_t storage_offset=-1)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_as_strided_(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_asin(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"asin(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_asin(r.tensor(0))); | |
} else { | |
return wrap(dispatch_asin(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_asin_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"asin_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_asin_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_atan(r.tensor(0))); | |
} else { | |
return wrap(dispatch_atan(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan2(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan2(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan2_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan2_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_atan2_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_atan_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_baddbmm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"baddbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated", | |
"baddbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated", | |
"baddbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_baddbmm_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"baddbmm_(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2)|deprecated", | |
"baddbmm_(Scalar beta, Tensor input, Tensor batch1, Tensor batch2)|deprecated", | |
"baddbmm_(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_baddbmm_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_baddbmm_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_baddbmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, double momentum, double eps, bool cudnn_enabled)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bernoulli(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bernoulli(Tensor input, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1))); | |
} else { | |
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bernoulli_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bernoulli_(Tensor input, Tensor p, Generator generator=None)", | |
"bernoulli_(Tensor input, double p, Generator generator=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_bernoulli_(r.tensor(0), r.tensor(1), r.generator(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_bernoulli_(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bmm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bmm(Tensor input, Tensor mat2, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_btrifact(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"btrifact(Tensor input, *, bool pivot=True, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_btrifact(r.tensor(0), r.toBool(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(dispatch_btrifact(r.tensor(0), r.toBool(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_btrifact_with_info(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"btrifact_with_info(Tensor input, *, bool pivot=True, TensorList[3] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_btrifact_with_info(r.tensor(0), r.toBool(1))); | |
} else { | |
auto results = r.tensorlist_n<3>(2); | |
return wrap(dispatch_btrifact_with_info(r.tensor(0), r.toBool(1), results[0], results[1], results[2])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_btrisolve(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"btrisolve(Tensor input, Tensor LU_data, Tensor LU_pivots, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_btrisolve(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_btrisolve(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cat(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cat(TensorList tensors, int64_t dim=0, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cauchy_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cauchy_(Tensor input, double median=0, double sigma=1, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cauchy_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ceil(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ceil(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_ceil(r.tensor(0))); | |
} else { | |
return wrap(dispatch_ceil(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ceil_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ceil_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ceil_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_chunk(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"chunk(Tensor input, int64_t chunks, int64_t dim=0)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_chunk(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clone(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clone(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_clone(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv1d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv1d(Tensor input, Tensor weight, Tensor bias=None, IntList[1] stride=1, IntList[1] padding=0, IntList[1] dilation=1, int64_t groups=1)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv2d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv2d(Tensor input, Tensor weight, Tensor bias=None, IntList[2] stride=1, IntList[2] padding=0, IntList[2] dilation=1, int64_t groups=1)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv3d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv3d(Tensor input, Tensor weight, Tensor bias=None, IntList[3] stride=1, IntList[3] padding=0, IntList[3] dilation=1, int64_t groups=1)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_tbc(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_tbc(Tensor input, Tensor weight, Tensor bias, int64_t pad)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_tbc(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose1d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose1d(Tensor input, Tensor weight, Tensor bias=None, IntList[1] stride=1, IntList[1] padding=0, IntList[1] output_padding=0, int64_t groups=1, IntList[1] dilation=1)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose2d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose2d(Tensor input, Tensor weight, Tensor bias=None, IntList[2] stride=1, IntList[2] padding=0, IntList[2] output_padding=0, int64_t groups=1, IntList[2] dilation=1)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose3d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose3d(Tensor input, Tensor weight, Tensor bias=None, IntList[3] stride=1, IntList[3] padding=0, IntList[3] output_padding=0, int64_t groups=1, IntList[3] dilation=1)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_convolution(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cos(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cos(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_cos(r.tensor(0))); | |
} else { | |
return wrap(dispatch_cos(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cos_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cos_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cos_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosh(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosh(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_cosh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_cosh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosh_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosh_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cosh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cross(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cross(Tensor input, Tensor other, int64_t dim=-1, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} else { | |
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_affine_grid_generator(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_affine_grid_generator(Tensor theta, int64_t N, int64_t C, int64_t H, int64_t W)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_affine_grid_generator(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_batch_norm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, double exponential_average_factor, double epsilon)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution(Tensor input, Tensor weight, Tensor? bias, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_backward_bias(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_backward_bias(Tensor grad_output)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_backward_bias(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_backward_input(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_backward_input(IntList self_size, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_backward_input(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_backward_weight(IntList weight_size, Tensor grad_output, Tensor input, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_backward_weight(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_transpose(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_transpose(Tensor input, Tensor weight, Tensor? bias, IntList padding, IntList output_padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[10]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_transpose(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.intlist(6), r.toInt64(7), r.toBool(8), r.toBool(9))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_transpose_backward_bias(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_transpose_backward_bias(Tensor grad_output)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_transpose_backward_bias(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_transpose_backward_input(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[8]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_transpose_backward_input(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toInt64(5), r.toBool(6), r.toBool(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_transpose_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_transpose_backward_weight(IntList weight_size, Tensor grad_output, Tensor input, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}); | |
PyObject* parsed_args[9]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_transpose_backward_weight(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_grid_sampler(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_grid_sampler(Tensor input, Tensor grid)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_grid_sampler(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cumprod(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cumprod(Tensor input, int64_t dim, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cumsum(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cumsum(Tensor input, int64_t dim, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_data_ptr(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"data_ptr(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_data_ptr(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_det(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"det(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_det(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_diag(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"diag(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_digamma(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"digamma(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_digamma(r.tensor(0))); | |
} else { | |
return wrap(dispatch_digamma(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_digamma_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"digamma_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_digamma_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dist(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dist(Tensor input, Tensor other, Scalar p=2)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dist(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_div(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"div(Tensor input, Scalar other, *, Tensor out=None)", | |
"div(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_div(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_div(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_div(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_div(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_div_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"div_(Tensor input, Scalar other)", | |
"div_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_div_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_div_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dot(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dot(Tensor input, Tensor tensor)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dot(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eig(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eig(Tensor input, bool eigenvectors=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eig(r.tensor(0), r.toBool(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(dispatch_eig(r.tensor(0), r.toBool(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_embedding(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"embedding(Tensor weight, Tensor indices, int64_t padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_embedding(r.tensor(0), r.tensor(1), r.toInt64(2), r.toBool(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_embedding_renorm_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"embedding_renorm_(Tensor input, Tensor indices, double max_norm, double norm_type)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_embedding_renorm_(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eq(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eq(Tensor input, Scalar other, *, Tensor out=None)", | |
"eq(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eq(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_eq(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eq(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_eq(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eq_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eq_(Tensor input, Scalar other)", | |
"eq_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_eq_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_eq_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_equal(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"equal(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_equal(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erf(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erf(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_erf(r.tensor(0))); | |
} else { | |
return wrap(dispatch_erf(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erf_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erf_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_erf_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erfinv(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erfinv(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_erfinv(r.tensor(0))); | |
} else { | |
return wrap(dispatch_erfinv(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erfinv_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erfinv_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_erfinv_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_exp(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"exp(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_exp(r.tensor(0))); | |
} else { | |
return wrap(dispatch_exp(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_exp_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"exp_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_exp_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expand(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expand(Tensor input, IntList size)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_expand(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expand_as(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expand_as(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_expand_as(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expm1(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expm1(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_expm1(r.tensor(0))); | |
} else { | |
return wrap(dispatch_expm1(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expm1_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expm1_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_expm1_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_exponential_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"exponential_(Tensor input, double lambd=1, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_exponential_(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eye(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eye(int64_t n, int64_t m=1, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eye(r.toInt64(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_eye(r.toInt64(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fill_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fill_(Tensor input, Scalar value)", | |
"fill_(Tensor input, Tensor value)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fill_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_fill_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_floor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"floor(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_floor(r.tensor(0))); | |
} else { | |
return wrap(dispatch_floor(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_floor_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"floor_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_floor_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fmod(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fmod(Tensor input, Scalar other, *, Tensor out=None)", | |
"fmod(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fmod_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fmod_(Tensor input, Scalar other)", | |
"fmod_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fmod_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_fmod_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_frac(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"frac(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_frac(r.tensor(0))); | |
} else { | |
return wrap(dispatch_frac(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_frac_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"frac_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_frac_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gather(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gather(Tensor input, int64_t dim, Tensor index, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ge(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ge(Tensor input, Scalar other, *, Tensor out=None)", | |
"ge(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ge(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_ge(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ge(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ge(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ge_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ge_(Tensor input, Scalar other)", | |
"ge_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ge_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_ge_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gels(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gels(Tensor input, Tensor A, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gels(r.tensor(0), r.tensor(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(dispatch_gels(r.tensor(0), r.tensor(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_geometric_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"geometric_(Tensor input, double p, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_geometric_(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_geqrf(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"geqrf(Tensor input, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_geqrf(r.tensor(0))); | |
} else { | |
auto results = r.tensorlist_n<2>(1); | |
return wrap(dispatch_geqrf(r.tensor(0), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ger(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ger(Tensor input, Tensor vec2, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ger(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ger(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gesv(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gesv(Tensor input, Tensor A, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gesv(r.tensor(0), r.tensor(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(dispatch_gesv(r.tensor(0), r.tensor(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_get_device(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"get_device(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_get_device(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gt(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gt(Tensor input, Scalar other, *, Tensor out=None)", | |
"gt(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gt(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_gt(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gt(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_gt(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gt_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gt_(Tensor input, Scalar other)", | |
"gt_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_gt_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_gt_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_histc(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"histc(Tensor input, int64_t bins=100, Scalar min=0, Scalar max=0, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index(Tensor input, TensorList indices)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index(r.tensor(0), r.tensorlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_add_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_add_(Tensor input, int64_t dim, Tensor index, Tensor source)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_add_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_copy_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_copy_(Tensor input, int64_t dim, Tensor index, Tensor source)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_copy_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_fill_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_fill_(Tensor input, int64_t dim, Tensor index, Scalar value)", | |
"index_fill_(Tensor input, int64_t dim, Tensor index, Tensor value)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_fill_(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_index_fill_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_put_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_put_(Tensor input, TensorList indices, Tensor values)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_put_(r.tensor(0), r.tensorlist(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_select(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_select(Tensor input, int64_t dim, Tensor index, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_inverse(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"inverse(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_inverse(r.tensor(0))); | |
} else { | |
return wrap(dispatch_inverse(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_contiguous(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_contiguous(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_contiguous(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_distributed(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_distributed(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_distributed(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_nonzero(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_nonzero(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_nonzero(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_same_size(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_same_size(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_same_size(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_set_to(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_set_to(Tensor input, Tensor tensor)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_set_to(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_signed(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_signed(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_signed(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_kthvalue(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"kthvalue(Tensor input, int64_t k, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3))); | |
} else { | |
auto results = r.tensorlist_n<2>(4); | |
return wrap(dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_le(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"le(Tensor input, Scalar other, *, Tensor out=None)", | |
"le(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_le(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_le(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_le(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_le(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_le_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"le_(Tensor input, Scalar other)", | |
"le_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_le_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_le_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lerp(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lerp(Tensor input, Tensor end, Scalar weight, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lerp_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lerp_(Tensor input, Tensor end, Scalar weight)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_lerp_(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lgamma(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lgamma(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_lgamma(r.tensor(0))); | |
} else { | |
return wrap(dispatch_lgamma(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lgamma_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lgamma_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_lgamma_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_linspace(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"linspace(Scalar start, Scalar end, int64_t steps=100, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_linspace(r.scalar(0), r.scalar(1), r.toInt64(2))); | |
} else { | |
return wrap(dispatch_linspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log1p(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log1p(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log1p(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log1p(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log1p_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log1p_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log1p_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log_normal_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log_normal_(Tensor input, double mean=1, double std=2, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log_normal_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_logspace(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"logspace(Scalar start, Scalar end, int64_t steps=100, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_logspace(r.scalar(0), r.scalar(1), r.toInt64(2))); | |
} else { | |
return wrap(dispatch_logspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lt(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lt(Tensor input, Scalar other, *, Tensor out=None)", | |
"lt(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_lt(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_lt(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_lt(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_lt(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lt_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lt_(Tensor input, Scalar other)", | |
"lt_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_lt_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_lt_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_fill_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_fill_(Tensor input, Tensor mask, Scalar value)", | |
"masked_fill_(Tensor input, Tensor mask, Tensor value)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_masked_fill_(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_masked_fill_(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_scatter_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_scatter_(Tensor input, Tensor mask, Tensor source)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_masked_scatter_(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_select(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_select(Tensor input, Tensor mask, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_matmul(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"matmul(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_matmul(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max(Tensor input)", | |
"max(Tensor input, Tensor other, *, Tensor out=None)", | |
"max(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_max(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_max(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max_pool1d(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max_pool1d(Tensor input, IntList[1] kernel_size, IntList[1] stride=None, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=False)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max_pool1d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mean(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mean(Tensor input)", | |
"mean(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mean(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_mean(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_mean(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_median(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"median(Tensor input)", | |
"median(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_median(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_min(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"min(Tensor input)", | |
"min(Tensor input, Tensor other, *, Tensor out=None)", | |
"min(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_min(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_min(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_min(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mm(Tensor input, Tensor mat2, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mm(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mm(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mode(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mode(Tensor input, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mul(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mul(Tensor input, Scalar other, *, Tensor out=None)", | |
"mul(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mul(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_mul(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mul(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mul(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mul_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mul_(Tensor input, Scalar other)", | |
"mul_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mul_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_mul_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_multinomial(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"multinomial(Tensor input, int64_t num_samples, bool replacement=False, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3))); | |
} else { | |
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mv(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mv(Tensor input, Tensor vec, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mv(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mv(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_narrow(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"narrow(Tensor input, int64_t dim, int64_t start, int64_t length)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_narrow(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ne(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ne(Tensor input, Scalar other, *, Tensor out=None)", | |
"ne(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ne(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_ne(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ne(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ne(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ne_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ne_(Tensor input, Scalar other)", | |
"ne_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ne_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_ne_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_neg(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"neg(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_neg(r.tensor(0))); | |
} else { | |
return wrap(dispatch_neg(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_neg_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"neg_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_neg_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nnpack_spatial_convolution(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int64_t kW, int64_t kH, int64_t padW, int64_t padH)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_nnpack_spatial_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nnpack_spatial_convolution_backward_input(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int64_t kW, int64_t kH, int64_t padW, int64_t padH)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_nnpack_spatial_convolution_backward_input(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nnpack_spatial_convolution_backward_weight(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nnpack_spatial_convolution_backward_weight(Tensor input, IntList weight_size, Tensor grad_output, int64_t kW, int64_t kH, int64_t padW, int64_t padH)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_nnpack_spatial_convolution_backward_weight(r.tensor(0), r.intlist(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nonzero(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nonzero(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_nonzero(r.tensor(0))); | |
} else { | |
return wrap(dispatch_nonzero(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_norm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"norm(Tensor input, Scalar p=2)", | |
"norm(Tensor input, Scalar p=None, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_norm(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
auto self = r.tensor(0); | |
auto p = r.scalarWithDefault(1, 2); | |
auto dim = r.toInt64(2); | |
auto keepdim = r.toBool(3); | |
return wrap(dispatch_norm(self, p, dim, keepdim)); | |
} else { | |
auto self = r.tensor(0); | |
auto p = r.scalarWithDefault(1, 2); | |
auto dim = r.toInt64(2); | |
auto keepdim = r.toBool(3); | |
return wrap(dispatch_norm(self, p, dim, keepdim, r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_normal(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"normal(Tensor mean, Tensor std, *, Generator generator=None, Tensor out=None)", | |
"normal(Tensor mean, double std=1, *, Generator generator=None, Tensor out=None)", | |
"normal(double mean, Tensor std, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2), r.tensor(3))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2), r.tensor(3))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_normal_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"normal_(Tensor input, double mean=0, double std=1, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_normal_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_numel(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"numel(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_numel(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ones(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ones(IntList size, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_ones(r.intlist(0))); | |
} else { | |
return wrap(dispatch_ones(r.intlist(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ones_like(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ones_like(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_ones_like(r.tensor(0))); | |
} else { | |
return wrap(dispatch_ones_like(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_orgqr(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"orgqr(Tensor input, Tensor input2, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ormqr(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ormqr(Tensor input, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[6]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4))); | |
} else { | |
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_permute(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"permute(Tensor input, IntList dims)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_permute(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pin_memory(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pin_memory(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pin_memory(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_polygamma(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"polygamma(int64_t n, Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_polygamma_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"polygamma_(Tensor input, int64_t n)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_polygamma_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_potrf(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"potrf(Tensor input, bool upper=True, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_potrf(r.tensor(0), r.toBool(1))); | |
} else { | |
return wrap(dispatch_potrf(r.tensor(0), r.toBool(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_potri(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"potri(Tensor input, bool upper=True, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_potri(r.tensor(0), r.toBool(1))); | |
} else { | |
return wrap(dispatch_potri(r.tensor(0), r.toBool(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_potrs(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"potrs(Tensor input, Tensor input2, bool upper=True, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_potrs(r.tensor(0), r.tensor(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_potrs(r.tensor(0), r.tensor(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pow(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pow(Tensor input, Scalar exponent, *, Tensor out=None)", | |
"pow(Tensor input, Tensor exponent, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_pow(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_pow(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_pow(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_pow(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pow_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pow_(Tensor input, Scalar exponent)", | |
"pow_(Tensor input, Tensor exponent)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pow_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_pow_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_prod(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"prod(Tensor input)", | |
"prod(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_prod(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pstrf(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pstrf(Tensor input, bool upper=True, Scalar tol=-1, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_put_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"put_(Tensor input, Tensor index, Tensor source, bool accumulate=False)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_put_(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_qr(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"qr(Tensor input, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_qr(r.tensor(0))); | |
} else { | |
auto results = r.tensorlist_n<2>(1); | |
return wrap(dispatch_qr(r.tensor(0), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rand(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rand(IntList size, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_rand(r.intlist(0), r.generator(1))); | |
} else { | |
return wrap(dispatch_rand(r.intlist(0), r.generator(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randn(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randn(IntList size, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_randn(r.intlist(0), r.generator(1))); | |
} else { | |
return wrap(dispatch_randn(r.intlist(0), r.generator(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_random_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"random_(Tensor input, *, Generator generator=None)", | |
"random_(Tensor input, int64_t from, int64_t to, *, Generator generator=None)", | |
"random_(Tensor input, int64_t to, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_random_(r.tensor(0), r.generator(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_random_(r.tensor(0), r.toInt64(1), r.toInt64(2), r.generator(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_random_(r.tensor(0), r.toInt64(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randperm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randperm(int64_t n, *, Generator generator=None, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_randperm(r.toInt64(0), r.generator(1))); | |
} else { | |
return wrap(dispatch_randperm(r.toInt64(0), r.generator(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_range(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"range(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reciprocal(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reciprocal(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_reciprocal(r.tensor(0))); | |
} else { | |
return wrap(dispatch_reciprocal(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reciprocal_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reciprocal_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_reciprocal_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_remainder(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"remainder(Tensor input, Scalar other, *, Tensor out=None)", | |
"remainder(Tensor input, Tensor other, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_remainder_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"remainder_(Tensor input, Scalar other)", | |
"remainder_(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_remainder_(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_remainder_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_renorm(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"renorm(Tensor input, Scalar p, int64_t dim, Scalar maxnorm, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_renorm_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"renorm_(Tensor input, Scalar p, int64_t dim, Scalar maxnorm)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_renorm_(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reshape_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reshape_(Tensor input, IntList size, IntList stride)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_reshape_(r.tensor(0), r.intlist(1), r.intlist(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_resize_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"resize_(Tensor input, IntList size)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_resize_(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_resize_as_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"resize_as_(Tensor input, Tensor the_template)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_resize_as_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_round(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"round(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_round(r.tensor(0))); | |
} else { | |
return wrap(dispatch_round(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_round_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"round_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_round_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rrelu(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rrelu(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rrelu(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rrelu_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rrelu_(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rrelu_(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rsqrt(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rsqrt(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_rsqrt(r.tensor(0))); | |
} else { | |
return wrap(dispatch_rsqrt(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rsqrt_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rsqrt_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rsqrt_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_scatter_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"scatter_(Tensor input, int64_t dim, Tensor index, Scalar value)", | |
"scatter_(Tensor input, int64_t dim, Tensor index, Tensor src)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_scatter_(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_scatter_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_scatter_add_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"scatter_add_(Tensor input, int64_t dim, Tensor index, Tensor src)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_scatter_add_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_select(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"select(Tensor input, int64_t dim, int64_t index)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_select(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_selu(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"selu(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_selu(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_selu_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"selu_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_selu_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_set_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"set_(Tensor input)", | |
"set_(Tensor input, Storage sourceStorage, int64_t storage_offset, IntList size, IntList stride=None)", | |
"set_(Tensor input, Storage storage)", | |
"set_(Tensor input, Tensor source)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_set_(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_set_(r.tensor(0), *r.storage(1), r.toInt64(2), r.intlist(3), r.intlist(4))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_set_(r.tensor(0), *r.storage(1))); | |
} else if (r.idx == 3) { | |
return wrap(dispatch_set_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sigmoid(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sigmoid(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sigmoid(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sigmoid(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sigmoid_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sigmoid_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sigmoid_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sign(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sign(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sign(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sign(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sign_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sign_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sign_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sin(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sin(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sin(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sin(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sin_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sin_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sin_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sinh(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sinh(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sinh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sinh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sinh_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sinh_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sinh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_slice(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"slice(Tensor input, int64_t dim=0, int64_t start=0, int64_t end=9223372036854775807, int64_t step=1)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_slice(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sort(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sort(Tensor input, int64_t dim=-1, bool descending=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sparse_coo_tensor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sparse_coo_tensor(Tensor indices, Tensor values, IntList size)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_split(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"split(Tensor input, int64_t split_size, int64_t dim=0)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_split(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sqrt(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sqrt(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sqrt(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sqrt(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sqrt_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sqrt_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sqrt_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_squeeze(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"squeeze(Tensor input)", | |
"squeeze(Tensor input, int64_t dim)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_squeeze(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_squeeze(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_squeeze_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"squeeze_(Tensor input)", | |
"squeeze_(Tensor input, int64_t dim)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_squeeze_(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_squeeze_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_stack(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"stack(TensorList tensors, int64_t dim=0)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_stack(r.tensorlist(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_std(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"std(Tensor input, bool unbiased=True)", | |
"std(Tensor input, int64_t dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_std(r.tensor(0), r.toBool(1))); | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_std(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_std(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_stft(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"stft(Tensor input, int64_t frame_length, int64_t hop, int64_t fft_size=None, bool return_onesided=True, Tensor window=None, int64_t pad_end=0)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto frame_length = r.toInt64(1); | |
auto hop = r.toInt64(2); | |
auto fft_size = r.toInt64WithDefault(3, frame_length); | |
auto return_onesided = r.toBool(4); | |
auto window = r.tensor(5); | |
auto pad_end = r.toInt64(6); | |
return wrap(dispatch_stft(self, frame_length, hop, fft_size, return_onesided, window, pad_end)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_storage_offset(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"storage_offset(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_storage_offset(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sub(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sub(Tensor input, Scalar alpha, Tensor other)|deprecated", | |
"sub(Tensor input, Scalar other, *, Scalar alpha=1, Tensor out=None)", | |
"sub(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.scalar(2), r.tensor(3))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sub_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sub_(Tensor input, Scalar alpha, Tensor other)|deprecated", | |
"sub_(Tensor input, Scalar other, *, Scalar alpha=1)", | |
"sub_(Tensor input, Tensor other, *, Scalar alpha=1)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sub_(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_sub_(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_sub_(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sum(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sum(Tensor input)", | |
"sum(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sum(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sum(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_sum(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_svd(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"svd(Tensor input, bool some=True, *, TensorList[3] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_svd(r.tensor(0), r.toBool(1))); | |
} else { | |
auto results = r.tensorlist_n<3>(2); | |
return wrap(dispatch_svd(r.tensor(0), r.toBool(1), results[0], results[1], results[2])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_symeig(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"symeig(Tensor input, bool eigenvectors=False, bool upper=True, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_t(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"t(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_t(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_t_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"t_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_t_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_take(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"take(Tensor input, Tensor index, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_take(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_take(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tan(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tan(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_tan(r.tensor(0))); | |
} else { | |
return wrap(dispatch_tan(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tan_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tan_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tan_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tanh(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tanh(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_tanh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_tanh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tanh_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tanh_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tanh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tensor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tensor()", | |
"tensor(IntList size)", | |
"tensor(IntList size, IntList stride)", | |
"tensor(Storage storage, int64_t storageOffset, IntList size, IntList stride=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tensor()); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_tensor(r.intlist(0))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_tensor(r.intlist(0), r.intlist(1))); | |
} else if (r.idx == 3) { | |
return wrap(dispatch_tensor(*r.storage(0), r.toInt64(1), r.intlist(2), r.intlist(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_topk(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"topk(Tensor input, int64_t k, int64_t dim=-1, bool largest=True, bool sorted=True, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4))); | |
} else { | |
auto results = r.tensorlist_n<2>(5); | |
return wrap(dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trace(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trace(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_trace(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_transpose(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"transpose(Tensor input, int64_t dim0, int64_t dim1)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_transpose(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_transpose_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"transpose_(Tensor input, int64_t dim0, int64_t dim1)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_transpose_(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tril(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tril(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tril_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tril_(Tensor input, int64_t diagonal=0)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tril_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triu(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triu(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triu_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triu_(Tensor input, int64_t diagonal=0)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_triu_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trtrs(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trtrs(Tensor input, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, TensorList[2] out=None)", | |
}); | |
PyObject* parsed_args[7]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_trtrs(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4))); | |
} else { | |
auto results = r.tensorlist_n<2>(5); | |
return wrap(dispatch_trtrs(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trunc(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trunc(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_trunc(r.tensor(0))); | |
} else { | |
return wrap(dispatch_trunc(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trunc_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trunc_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_trunc_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_type_as(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"type_as(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_type_as(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unfold(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unfold(Tensor input, int64_t dimension, int64_t size, int64_t step)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unfold(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_uniform_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"uniform_(Tensor input, double from=0, double to=1, *, Generator generator=None)", | |
}); | |
PyObject* parsed_args[4]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_uniform_(r.tensor(0), r.toDouble(1), r.toDouble(2), r.generator(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unsqueeze(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unsqueeze(Tensor input, int64_t dim)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unsqueeze(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unsqueeze_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unsqueeze_(Tensor input, int64_t dim)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unsqueeze_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_var(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"var(Tensor input, bool unbiased=True)", | |
"var(Tensor input, int64_t dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[5]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_var(r.tensor(0), r.toBool(1))); | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_var(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_var(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_view(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"view(Tensor input, IntList size)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_view(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_view_as(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"view_as(Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_view_as(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_where(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"where(Tensor condition, Tensor input, Tensor other)", | |
}); | |
PyObject* parsed_args[3]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_where(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zero_(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zero_(Tensor input)", | |
}); | |
PyObject* parsed_args[1]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_zero_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zeros(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zeros(IntList size, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_zeros(r.intlist(0))); | |
} else { | |
return wrap(dispatch_zeros(r.intlist(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zeros_like(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zeros_like(Tensor input, *, Tensor out=None)", | |
}); | |
PyObject* parsed_args[2]; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_zeros_like(r.tensor(0))); | |
} else { | |
return wrap(dispatch_zeros_like(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyMethodDef torch_functions[] = { | |
{"clamp", (PyCFunction)THPVariable_clamp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"from_numpy", (PyCFunction)THPVariable_from_numpy, METH_STATIC | METH_O, NULL}, | |
{"__and__", (PyCFunction)THPVariable___and__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__iand__", (PyCFunction)THPVariable___iand__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__ilshift__", (PyCFunction)THPVariable___ilshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__ior__", (PyCFunction)THPVariable___ior__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__irshift__", (PyCFunction)THPVariable___irshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__ixor__", (PyCFunction)THPVariable___ixor__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__lshift__", (PyCFunction)THPVariable___lshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__or__", (PyCFunction)THPVariable___or__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__rshift__", (PyCFunction)THPVariable___rshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__xor__", (PyCFunction)THPVariable___xor__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_convolution", (PyCFunction)THPVariable__convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_convolution_nogroup", (PyCFunction)THPVariable__convolution_nogroup, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_copy_ignoring_overlaps_", (PyCFunction)THPVariable__copy_ignoring_overlaps_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_det_with_svd", (PyCFunction)THPVariable__det_with_svd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_indices", (PyCFunction)THPVariable__indices, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_s_where", (PyCFunction)THPVariable__s_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sparse_mask", (PyCFunction)THPVariable__sparse_mask, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_standard_gamma", (PyCFunction)THPVariable__standard_gamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_standard_gamma_grad", (PyCFunction)THPVariable__standard_gamma_grad, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_values", (PyCFunction)THPVariable__values, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"abs", (PyCFunction)THPVariable_abs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"abs_", (PyCFunction)THPVariable_abs_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"acos", (PyCFunction)THPVariable_acos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"acos_", (PyCFunction)THPVariable_acos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"adaptive_avg_pool1d", (PyCFunction)THPVariable_adaptive_avg_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"adaptive_max_pool1d", (PyCFunction)THPVariable_adaptive_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"add", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"add_", (PyCFunction)THPVariable_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addbmm", (PyCFunction)THPVariable_addbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addbmm_", (PyCFunction)THPVariable_addbmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcdiv", (PyCFunction)THPVariable_addcdiv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcdiv_", (PyCFunction)THPVariable_addcdiv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcmul", (PyCFunction)THPVariable_addcmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcmul_", (PyCFunction)THPVariable_addcmul_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmm", (PyCFunction)THPVariable_addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmm_", (PyCFunction)THPVariable_addmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmv", (PyCFunction)THPVariable_addmv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmv_", (PyCFunction)THPVariable_addmv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addr", (PyCFunction)THPVariable_addr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addr_", (PyCFunction)THPVariable_addr_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"all", (PyCFunction)THPVariable_all, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"allclose", (PyCFunction)THPVariable_allclose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"any", (PyCFunction)THPVariable_any, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"arange", (PyCFunction)THPVariable_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"as_strided", (PyCFunction)THPVariable_as_strided, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"as_strided_", (PyCFunction)THPVariable_as_strided_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"asin", (PyCFunction)THPVariable_asin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"asin_", (PyCFunction)THPVariable_asin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan", (PyCFunction)THPVariable_atan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan2", (PyCFunction)THPVariable_atan2, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan2_", (PyCFunction)THPVariable_atan2_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan_", (PyCFunction)THPVariable_atan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"baddbmm", (PyCFunction)THPVariable_baddbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"baddbmm_", (PyCFunction)THPVariable_baddbmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm", (PyCFunction)THPVariable_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bernoulli", (PyCFunction)THPVariable_bernoulli, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bernoulli_", (PyCFunction)THPVariable_bernoulli_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bmm", (PyCFunction)THPVariable_bmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"btrifact", (PyCFunction)THPVariable_btrifact, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"btrifact_with_info", (PyCFunction)THPVariable_btrifact_with_info, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"btrisolve", (PyCFunction)THPVariable_btrisolve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cat", (PyCFunction)THPVariable_cat, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cauchy_", (PyCFunction)THPVariable_cauchy_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ceil", (PyCFunction)THPVariable_ceil, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ceil_", (PyCFunction)THPVariable_ceil_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"chunk", (PyCFunction)THPVariable_chunk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clone", (PyCFunction)THPVariable_clone, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv1d", (PyCFunction)THPVariable_conv1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv2d", (PyCFunction)THPVariable_conv2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv3d", (PyCFunction)THPVariable_conv3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_tbc", (PyCFunction)THPVariable_conv_tbc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose1d", (PyCFunction)THPVariable_conv_transpose1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose2d", (PyCFunction)THPVariable_conv_transpose2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose3d", (PyCFunction)THPVariable_conv_transpose3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"convolution", (PyCFunction)THPVariable_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cos", (PyCFunction)THPVariable_cos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cos_", (PyCFunction)THPVariable_cos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosh", (PyCFunction)THPVariable_cosh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosh_", (PyCFunction)THPVariable_cosh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cross", (PyCFunction)THPVariable_cross, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_affine_grid_generator", (PyCFunction)THPVariable_cudnn_affine_grid_generator, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_batch_norm", (PyCFunction)THPVariable_cudnn_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution", (PyCFunction)THPVariable_cudnn_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_backward_bias", (PyCFunction)THPVariable_cudnn_convolution_backward_bias, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_backward_input", (PyCFunction)THPVariable_cudnn_convolution_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_backward_weight", (PyCFunction)THPVariable_cudnn_convolution_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_transpose", (PyCFunction)THPVariable_cudnn_convolution_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_transpose_backward_bias", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_bias, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_transpose_backward_input", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_transpose_backward_weight", (PyCFunction)THPVariable_cudnn_convolution_transpose_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_grid_sampler", (PyCFunction)THPVariable_cudnn_grid_sampler, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cumprod", (PyCFunction)THPVariable_cumprod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cumsum", (PyCFunction)THPVariable_cumsum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"data_ptr", (PyCFunction)THPVariable_data_ptr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"det", (PyCFunction)THPVariable_det, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"diag", (PyCFunction)THPVariable_diag, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"digamma", (PyCFunction)THPVariable_digamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"digamma_", (PyCFunction)THPVariable_digamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dist", (PyCFunction)THPVariable_dist, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"div", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"div_", (PyCFunction)THPVariable_div_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dot", (PyCFunction)THPVariable_dot, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eig", (PyCFunction)THPVariable_eig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"embedding", (PyCFunction)THPVariable_embedding, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"embedding_renorm_", (PyCFunction)THPVariable_embedding_renorm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eq", (PyCFunction)THPVariable_eq, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eq_", (PyCFunction)THPVariable_eq_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"equal", (PyCFunction)THPVariable_equal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erf", (PyCFunction)THPVariable_erf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erf_", (PyCFunction)THPVariable_erf_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erfinv", (PyCFunction)THPVariable_erfinv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erfinv_", (PyCFunction)THPVariable_erfinv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"exp", (PyCFunction)THPVariable_exp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"exp_", (PyCFunction)THPVariable_exp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expand", (PyCFunction)THPVariable_expand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expand_as", (PyCFunction)THPVariable_expand_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expm1", (PyCFunction)THPVariable_expm1, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expm1_", (PyCFunction)THPVariable_expm1_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"exponential_", (PyCFunction)THPVariable_exponential_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eye", (PyCFunction)THPVariable_eye, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fill_", (PyCFunction)THPVariable_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"floor", (PyCFunction)THPVariable_floor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"floor_", (PyCFunction)THPVariable_floor_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fmod", (PyCFunction)THPVariable_fmod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fmod_", (PyCFunction)THPVariable_fmod_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"frac", (PyCFunction)THPVariable_frac, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"frac_", (PyCFunction)THPVariable_frac_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gather", (PyCFunction)THPVariable_gather, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ge", (PyCFunction)THPVariable_ge, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ge_", (PyCFunction)THPVariable_ge_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gels", (PyCFunction)THPVariable_gels, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"geometric_", (PyCFunction)THPVariable_geometric_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"geqrf", (PyCFunction)THPVariable_geqrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ger", (PyCFunction)THPVariable_ger, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gesv", (PyCFunction)THPVariable_gesv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"get_device", (PyCFunction)THPVariable_get_device, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gt", (PyCFunction)THPVariable_gt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gt_", (PyCFunction)THPVariable_gt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"histc", (PyCFunction)THPVariable_histc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index", (PyCFunction)THPVariable_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_add_", (PyCFunction)THPVariable_index_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_copy_", (PyCFunction)THPVariable_index_copy_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_fill_", (PyCFunction)THPVariable_index_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_put_", (PyCFunction)THPVariable_index_put_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_select", (PyCFunction)THPVariable_index_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"inverse", (PyCFunction)THPVariable_inverse, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_contiguous", (PyCFunction)THPVariable_is_contiguous, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_distributed", (PyCFunction)THPVariable_is_distributed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_nonzero", (PyCFunction)THPVariable_is_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_same_size", (PyCFunction)THPVariable_is_same_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_set_to", (PyCFunction)THPVariable_is_set_to, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_signed", (PyCFunction)THPVariable_is_signed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"kthvalue", (PyCFunction)THPVariable_kthvalue, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"le", (PyCFunction)THPVariable_le, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"le_", (PyCFunction)THPVariable_le_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lerp", (PyCFunction)THPVariable_lerp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lerp_", (PyCFunction)THPVariable_lerp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lgamma", (PyCFunction)THPVariable_lgamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lgamma_", (PyCFunction)THPVariable_lgamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"linspace", (PyCFunction)THPVariable_linspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log", (PyCFunction)THPVariable_log, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log1p", (PyCFunction)THPVariable_log1p, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log1p_", (PyCFunction)THPVariable_log1p_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log_", (PyCFunction)THPVariable_log_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log_normal_", (PyCFunction)THPVariable_log_normal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"logspace", (PyCFunction)THPVariable_logspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lt", (PyCFunction)THPVariable_lt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lt_", (PyCFunction)THPVariable_lt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_fill_", (PyCFunction)THPVariable_masked_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_scatter_", (PyCFunction)THPVariable_masked_scatter_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_select", (PyCFunction)THPVariable_masked_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"matmul", (PyCFunction)THPVariable_matmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max", (PyCFunction)THPVariable_max, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max_pool1d", (PyCFunction)THPVariable_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mean", (PyCFunction)THPVariable_mean, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"median", (PyCFunction)THPVariable_median, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"min", (PyCFunction)THPVariable_min, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mode", (PyCFunction)THPVariable_mode, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mul", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mul_", (PyCFunction)THPVariable_mul_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"multinomial", (PyCFunction)THPVariable_multinomial, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mv", (PyCFunction)THPVariable_mv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"narrow", (PyCFunction)THPVariable_narrow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ne", (PyCFunction)THPVariable_ne, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ne_", (PyCFunction)THPVariable_ne_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"neg", (PyCFunction)THPVariable_neg, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"neg_", (PyCFunction)THPVariable_neg_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nnpack_spatial_convolution", (PyCFunction)THPVariable_nnpack_spatial_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nnpack_spatial_convolution_backward_input", (PyCFunction)THPVariable_nnpack_spatial_convolution_backward_input, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nnpack_spatial_convolution_backward_weight", (PyCFunction)THPVariable_nnpack_spatial_convolution_backward_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nonzero", (PyCFunction)THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"norm", (PyCFunction)THPVariable_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"normal", (PyCFunction)THPVariable_normal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"normal_", (PyCFunction)THPVariable_normal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"numel", (PyCFunction)THPVariable_numel, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ones", (PyCFunction)THPVariable_ones, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ones_like", (PyCFunction)THPVariable_ones_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"orgqr", (PyCFunction)THPVariable_orgqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ormqr", (PyCFunction)THPVariable_ormqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"permute", (PyCFunction)THPVariable_permute, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pin_memory", (PyCFunction)THPVariable_pin_memory, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"polygamma", (PyCFunction)THPVariable_polygamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"polygamma_", (PyCFunction)THPVariable_polygamma_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"potrf", (PyCFunction)THPVariable_potrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"potri", (PyCFunction)THPVariable_potri, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"potrs", (PyCFunction)THPVariable_potrs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pow", (PyCFunction)THPVariable_pow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pow_", (PyCFunction)THPVariable_pow_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"prod", (PyCFunction)THPVariable_prod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pstrf", (PyCFunction)THPVariable_pstrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"put_", (PyCFunction)THPVariable_put_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"qr", (PyCFunction)THPVariable_qr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rand", (PyCFunction)THPVariable_rand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randn", (PyCFunction)THPVariable_randn, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"random_", (PyCFunction)THPVariable_random_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randperm", (PyCFunction)THPVariable_randperm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"range", (PyCFunction)THPVariable_range, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reciprocal", (PyCFunction)THPVariable_reciprocal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reciprocal_", (PyCFunction)THPVariable_reciprocal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"remainder", (PyCFunction)THPVariable_remainder, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"remainder_", (PyCFunction)THPVariable_remainder_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"renorm", (PyCFunction)THPVariable_renorm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"renorm_", (PyCFunction)THPVariable_renorm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reshape_", (PyCFunction)THPVariable_reshape_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"resize_", (PyCFunction)THPVariable_resize_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"resize_as_", (PyCFunction)THPVariable_resize_as_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"round", (PyCFunction)THPVariable_round, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"round_", (PyCFunction)THPVariable_round_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rrelu", (PyCFunction)THPVariable_rrelu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rrelu_", (PyCFunction)THPVariable_rrelu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rsqrt", (PyCFunction)THPVariable_rsqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rsqrt_", (PyCFunction)THPVariable_rsqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"scatter_", (PyCFunction)THPVariable_scatter_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"scatter_add_", (PyCFunction)THPVariable_scatter_add_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"select", (PyCFunction)THPVariable_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"selu", (PyCFunction)THPVariable_selu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"selu_", (PyCFunction)THPVariable_selu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"set_", (PyCFunction)THPVariable_set_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sigmoid", (PyCFunction)THPVariable_sigmoid, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sigmoid_", (PyCFunction)THPVariable_sigmoid_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sign", (PyCFunction)THPVariable_sign, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sign_", (PyCFunction)THPVariable_sign_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sin", (PyCFunction)THPVariable_sin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sin_", (PyCFunction)THPVariable_sin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sinh", (PyCFunction)THPVariable_sinh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sinh_", (PyCFunction)THPVariable_sinh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"slice", (PyCFunction)THPVariable_slice, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sort", (PyCFunction)THPVariable_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sparse_coo_tensor", (PyCFunction)THPVariable_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"split", (PyCFunction)THPVariable_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sqrt", (PyCFunction)THPVariable_sqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sqrt_", (PyCFunction)THPVariable_sqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"squeeze", (PyCFunction)THPVariable_squeeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"squeeze_", (PyCFunction)THPVariable_squeeze_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"stack", (PyCFunction)THPVariable_stack, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"std", (PyCFunction)THPVariable_std, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"stft", (PyCFunction)THPVariable_stft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"storage_offset", (PyCFunction)THPVariable_storage_offset, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sub", (PyCFunction)THPVariable_sub, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sub_", (PyCFunction)THPVariable_sub_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sum", (PyCFunction)THPVariable_sum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"svd", (PyCFunction)THPVariable_svd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"symeig", (PyCFunction)THPVariable_symeig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"t", (PyCFunction)THPVariable_t, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"t_", (PyCFunction)THPVariable_t_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"take", (PyCFunction)THPVariable_take, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tan", (PyCFunction)THPVariable_tan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tan_", (PyCFunction)THPVariable_tan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tanh", (PyCFunction)THPVariable_tanh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tanh_", (PyCFunction)THPVariable_tanh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tensor", (PyCFunction)THPVariable_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"topk", (PyCFunction)THPVariable_topk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trace", (PyCFunction)THPVariable_trace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"transpose", (PyCFunction)THPVariable_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"transpose_", (PyCFunction)THPVariable_transpose_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tril", (PyCFunction)THPVariable_tril, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tril_", (PyCFunction)THPVariable_tril_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triu", (PyCFunction)THPVariable_triu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triu_", (PyCFunction)THPVariable_triu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trtrs", (PyCFunction)THPVariable_trtrs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trunc", (PyCFunction)THPVariable_trunc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trunc_", (PyCFunction)THPVariable_trunc_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"type_as", (PyCFunction)THPVariable_type_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unfold", (PyCFunction)THPVariable_unfold, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"uniform_", (PyCFunction)THPVariable_uniform_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unsqueeze", (PyCFunction)THPVariable_unsqueeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unsqueeze_", (PyCFunction)THPVariable_unsqueeze_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"var", (PyCFunction)THPVariable_var, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"view", (PyCFunction)THPVariable_view, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"view_as", (PyCFunction)THPVariable_view_as, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"where", (PyCFunction)THPVariable_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zero_", (PyCFunction)THPVariable_zero_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zeros", (PyCFunction)THPVariable_zeros, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zeros_like", (PyCFunction)THPVariable_zeros_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{NULL} | |
}; | |
static PyTypeObject THPVariableFunctions = { | |
PyVarObject_HEAD_INIT(NULL, 0) | |
"torch._C._VariableFunctions", /* tp_name */ | |
0, /* tp_basicsize */ | |
0, /* tp_itemsize */ | |
0, /* tp_dealloc */ | |
0, /* tp_print */ | |
0, /* tp_getattr */ | |
0, /* tp_setattr */ | |
0, /* tp_reserved */ | |
0, /* tp_repr */ | |
0, /* tp_as_number */ | |
0, /* tp_as_sequence */ | |
0, /* tp_as_mapping */ | |
0, /* tp_hash */ | |
0, /* tp_call */ | |
0, /* tp_str */ | |
0, /* tp_getattro */ | |
0, /* tp_setattro */ | |
0, /* tp_as_buffer */ | |
Py_TPFLAGS_DEFAULT, /* tp_flags */ | |
NULL, /* tp_doc */ | |
0, /* tp_traverse */ | |
0, /* tp_clear */ | |
0, /* tp_richcompare */ | |
0, /* tp_weaklistoffset */ | |
0, /* tp_iter */ | |
0, /* tp_iternext */ | |
torch_functions, /* tp_methods */ | |
0, /* tp_members */ | |
0, /* tp_getset */ | |
0, /* tp_base */ | |
0, /* tp_dict */ | |
0, /* tp_descr_get */ | |
0, /* tp_descr_set */ | |
0, /* tp_dictoffset */ | |
0, /* tp_init */ | |
0, /* tp_alloc */ | |
0 /* tp_new */ | |
}; | |
void initTorchFunctions(PyObject* module) { | |
if (PyType_Ready(&THPVariableFunctions) < 0) { | |
throw python_error(); | |
} | |
Py_INCREF(&THPVariableFunctions); | |
if (PyModule_AddObject(module, "_VariableFunctions", (PyObject*)&THPVariableFunctions) < 0) { | |
throw python_error(); | |
} | |
} | |
}} // namespace torch::autograd |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment