Created
October 22, 2017 08:41
-
-
Save colinpollock/5cd6fb58696fe77a98766a65ca27ac49 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Make initial clusters of categories to bootstrap top-level categories.""" | |
from collections import defaultdict | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans, MiniBatchKMeans | |
from j_util import get_rows | |
def get_docs(): | |
cat_to_clues = defaultdict(list) | |
for row in get_rows() | |
row['category'] = row['category'].lower() | |
cat_to_clues[row['category']].append(row) | |
docs = [] | |
categories = [] | |
for category, clues in cat_to_clues.items(): | |
clue_answer_string = '\t'.join([ | |
'{}: {}'.format(clue['clue'], clue['answer']) | |
for clue in clues | |
]) | |
docs.append(category + '\n' + clue_answer_string) | |
categories.append(category) | |
return docs, categories, cat_to_clues | |
def cluster(vectorizer, docs): | |
verbose = False | |
num_clusters = 100 | |
X = vectorizer.fit_transform(docs) | |
km = MiniBatchKMeans(n_clusters=num_clusters, init='k-means++', n_init=1, | |
init_size=1000, batch_size=1000, verbose=verbose) | |
km.fit(X) | |
return km | |
def top_cluster_words(vectorizer, km, cluster_idx): | |
order_centroids = km.cluster_centers_.argsort()[:, ::-1] | |
terms = vectorizer.get_feature_names() | |
print("Cluster %d:" % cluster_idx, end='', file=out) | |
return [terms[indx] for ind in order_centroids[cluster_idx,:]] | |
DOCS, CATEGORIES, category_to_clues = get_docs() | |
num_features = 10000 | |
use_idf = True | |
vectorizer = TfidfVectorizer(max_df=0.5, max_features=num_features, | |
min_df=2, stop_words='english', | |
use_idf=use_idf) | |
km = cluster(vectorizer, DOCS) | |
def get_categories_in_cluster(category): | |
category_idx = CATEGORIES.index(category) | |
cluster_idx = km.labels_[category_idx] | |
other_categories_idxs = { | |
category_idx | |
for (category_idx, cluster) in enumerate(km.labels_) | |
if cluster == cluster_idx | |
} | |
return [cat for (idx, cat) in enumerate(CATEGORIES) if idx in other_categories_idxs] | |
NUM_CATEGORIES = 100 | |
sorted_cats = sorted(category_to_clues.keys(), key=lambda category: -len(category_to_clues[category]))[:NUM_CATEGORIES] | |
seen_categories = set() | |
for idx, main_category in enumerate(sorted_cats, start=1): | |
categories_in_cluster = get_categories_in_cluster(main_category) | |
categories = [main_category] + categories_in_cluster | |
categories = [c for c in categories if c not in seen_categories] | |
s = sum(len(category_to_clues[cat]) for cat in categories) | |
if s == 0: | |
continue | |
print('## Category {:d}: {} ({} clues)##'.format(idx, main_category, len(category_to_clues[main_category]))) | |
print('cluster: {} categories, {} clues'.format(len(categories), s)) | |
categories.sort(key=lambda cat: -len(category_to_clues[cat])) | |
for category in categories: | |
num_clues = len(category_to_clues[category]) | |
if num_clues < 25: | |
continue | |
print(' Cat: {} ({} clues)'.format(category, num_clues)) | |
for clue in category_to_clues[category][:3]: | |
print(' Clue: {}: {}'.format(clue['clue'], clue['answer'])) | |
seen_categories.update(categories) | |
print() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment