Created
August 7, 2020 17:14
-
-
Save comaniac/0962717b437900fd0db42bd6ad14a9cd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tvm | |
from tvm import relay | |
from tvm.contrib import graph_runtime | |
from tvm.relay.backend import compile_engine | |
import gluoncv as gcv | |
model_name = 'MobileNet1.0' | |
shape = (1, 3, 224, 224) | |
target = 'llvm -mcpu=skylake-avx512' | |
dev_ctx = tvm.cpu(0) | |
net = gcv.model_zoo.get_model(model_name, pretrained=True) | |
mod, params = relay.frontend.from_mxnet(net, shape={'data': shape}) | |
compile_engine.get().clear() | |
with relay.build_config(opt_level=3): | |
graph, lib, params = relay.build_module.build(mod, target=target, params=params) | |
print('Evaluating...') | |
runtime = graph_runtime.create(graph, lib, dev_ctx) | |
runtime.set_input('data', | |
tvm.nd.array(np.random.uniform(size=shape).astype('float32'))) | |
runtime.set_input(**params) | |
ftimer = runtime.module.time_evaluator('run', dev_ctx, number=100, repeat=3) | |
prof_res = np.array(ftimer().results) * 1000 | |
print('Mean inference time (std dev): %.2f ms (%.2f ms)' % | |
(np.mean(prof_res), np.std(prof_res))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment