Last active
March 19, 2018 12:11
-
-
Save conormm/cf36308d6ccbc51312218422a6370a82 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import os | |
import pymc3 as pm | |
from sklearn.preprocessing import StandardScaler | |
import matplotlib.pyplot as plt | |
%matplotlib inline | |
df = pd.read_csv("sleep_study.csv") | |
df.columns = df.columns.str.lower() | |
dayscaler = StandardScaler() | |
df["days"] = dayscaler.fit_transform(df.iloc[:, 1].values.reshape(-1, 1)) | |
n_days = df.days.nunique() | |
n_subjects = df.subject.nunique() | |
subject_names = df.subject.unique() | |
subject_ix = np.array(list(range(len(subject_names)))) | |
subject_idx = df.subject.unique() | |
subject_code = df.subject.map(dict(zip(subject_idx, subject_ix))).values | |
with pm.Model() as sleepmodel: | |
# specify priors for pooled intercept | |
intercept_i_mu = pm.Normal("intercept_i_mu", mu=200, sd=20) | |
intercept_i_sig = pm.HalfCauchy("intercept_i_sig", beta=1) | |
# specify priors for pooled slope | |
slope_i_mu = pm.Normal("slope_i_mu", mu=10, sd=3) | |
slope_i_sig = pm.HalfCauchy("slope_i_sig", beta=3) | |
# intercept for each subject | |
intercept_ic_mu = pm.Normal("intercept_ic_mu", | |
mu=0, | |
sd=5, | |
shape=n_subjects) | |
inter = pm.Deterministic("inter", intercept_i_mu + np.exp(intercept_ic_mu) * intercept_i_sig) | |
slope_ic_mu = pm.Normal("slope_ic_mu", | |
mu=0, | |
sd=5, | |
shape=n_subjects) | |
slope = pm.Deterministic("slope", slope_i_mu + slope_ic_mu * slope_i_sig) | |
# Model error | |
eps = pm.HalfCauchy('eps', beta=1) | |
# Expected value | |
pred = inter[subject_code] + slope[subject_code] * df.days.values | |
# Data likelihood | |
y_like = pm.Normal('y_like', mu=pred, sd=eps, observed=df.reaction.values) | |
with sleepmodel: | |
hierarchical_trace = pm.sample(10000, tune=1000)[1000:] | |
# model without mixed / hierarchical effects | |
with pm.Model() as lm: | |
intercept = pm.Normal("intercept", mu=200, sd=5) | |
slope = pm.Normal("slope", mu=10, sd=5) | |
error = pm.HalfCauchy("eps", beta=1) | |
predicted = intercept + slope * df.days.values | |
y_like = pm.Normal("y_like", mu=predicted, sd=error, observed=df.reaction.values) | |
with lm: | |
lm_trace = pm.sample(5000, tune=1000)[1000:] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment