Last active
May 6, 2020 23:08
-
-
Save copumpkin/3889687 to your computer and use it in GitHub Desktop.
Primes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Primes where | |
open import Level using (_⊔_) | |
open import Coinduction | |
open import Function | |
open import Data.Empty | |
open import Data.Unit | |
open import Data.Nat | |
open import Data.Nat.Properties | |
open import Data.Nat.Divisibility | |
-- open import Data.Nat.Primality -- This is NAD's new primality predicate, which has advantages and disadvantages over mine | |
open import Data.Nat.InfinitelyOften | |
open import Data.Stream | |
open import Data.Vec using (Vec; []; _∷_) | |
open import Data.Sum | |
open import Data.Product | |
open import Relation.Nullary | |
open import Relation.Nullary.Decidable | |
open import Relation.Unary hiding (_∈_) | |
open import Relation.Binary.PropositionalEquality | |
-- From https://gist.github.com/1286093 | |
open import Prime hiding (primes) | |
n+0≡n : ∀ n → n + 0 ≡ n | |
n+0≡n zero = refl | |
n+0≡n (suc n) = cong suc $ n+0≡n n | |
m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n) | |
m+1+n≡1+m+n zero n = refl | |
m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n) | |
data All {p} {A : Set} (P : A → Set p) : Stream A → Set p where | |
_∷_ : ∀ {x xs} (px : P x) (pxs : ∞ (All P (♭ xs))) → All P (x ∷ xs) | |
data Infinite {p} (P : ℕ → Set p) (x : ℕ) : Set p where | |
yes : ( px : P x) (pxs : ∞ (Infinite P (1 + x))) → Infinite P x | |
no : (¬px : ¬ P x) (pxs : Infinite P (1 + x)) → Infinite P x | |
toStream : ∀ {p} {P : ℕ → Set p} {x} → Infinite P x → Stream ℕ | |
toStream {x = x} (yes px pxs) = x ∷ ♯ toStream (♭ pxs) | |
toStream (no ¬px pxs) = toStream pxs | |
toAll : ∀ {p} {P : ℕ → Set p} {x} (i : Infinite P x) → All P (toStream i) | |
toAll (yes px pxs) = px ∷ ♯ (toAll (♭ pxs)) | |
toAll (no ¬px pxs) = toAll pxs | |
member : ∀ {p} {P : ℕ → Set p} m (inf : Infinite P m) → ∀ n → P (m + n) → m + n ∈ toStream inf | |
member m (yes px pxs) zero pn rewrite n+0≡n m = here | |
member m (no ¬px pxs) zero pn rewrite n+0≡n m = ⊥-elim (¬px pn) | |
member m (yes px pxs) (suc n) pn rewrite m+1+n≡1+m+n m n = there (member (suc m) (♭ pxs) n pn) | |
member m (no ¬px pxs) (suc n) pn rewrite m+1+n≡1+m+n m n = member (suc m) pxs n pn | |
Inf′ : (ℕ → Set) → Set | |
Inf′ P = ∀ n → ∃ λ i → P (i + n) | |
infinite : (P : ℕ → Set) → Decidable P → Inf′ P → ∀ n → Infinite P n | |
infinite P p? inf n with p? n | |
infinite P p? inf n | yes p = yes p (♯ infinite P p? inf (suc n)) | |
infinite P p? inf n | no ¬p = helper _ (proj₁ (inf n)) (proj₂ (inf n)) | |
where | |
helper : ∀ n i → P (i + n) → Infinite P n | |
helper n zero pni = yes pni (♯ (infinite P p? inf _)) | |
helper n (suc i) pni with p? n | |
helper n (suc i) pni | yes q = yes q (♯ (infinite P p? inf _)) | |
helper n (suc i) pni | no ¬q rewrite sym (m+1+n≡1+m+n i n) = no ¬q (helper (suc n) i pni) | |
diff : ∀ {m n} → m ≤′ n → ∃ λ i → i + m ≡ n | |
diff ≤′-refl = 0 , refl | |
diff (≤′-step pf) with diff pf | |
diff (≤′-step pf) | i , eq = suc i , cong suc eq | |
inf : Inf′ Prime | |
inf n with generate n | |
inf n | i , pf , p with diff (≤⇒≤′ pf) | |
inf n | ._ , pf , p | j , refl rewrite m+1+n≡1+m+n j n = suc j , p | |
prime? : Decidable Prime | |
prime? zero = no λ { (prime () pf) } | |
prime? (suc zero) = no λ { (prime (s≤s ()) pf) } | |
prime? (suc (suc n)) with primality (2 + n) (s≤s (s≤s z≤n)) | |
prime? (suc (suc n)) | inj₁ x = yes x | |
prime? (suc (suc n)) | inj₂ y = no (λ p → ¬Prime×Composite p y) | |
infinitePrimes : Infinite Prime 0 | |
infinitePrimes = infinite Prime prime? inf 0 | |
primes : Stream ℕ | |
primes = toStream infinitePrimes | |
allPrimes : All Prime primes | |
allPrimes = toAll infinitePrimes | |
everyPrime : ∀ n → Prime n → n ∈ primes | |
everyPrime = member 0 infinitePrimes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment