Last active
March 14, 2023 09:32
-
-
Save copumpkin/4647315 to your computer and use it in GitHub Desktop.
Work in progress on seemingly impossible Agda, à la Escardó with a Luke Palmer flavor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Weird where | |
open import Coinduction | |
open import Function | |
open import Data.Empty | |
open import Data.Product | |
open import Data.Conat | |
open import Relation.Nullary | |
open import Relation.Nullary.Negation | |
open import Relation.Unary as U | |
open import Relation.Binary as B using (module Setoid; _Respects_; _⇒_; _=[_]⇒_) | |
import Relation.Binary.PropositionalEquality as PropEq | |
open PropEq using (_≡_) renaming (sym to ≡-sym) | |
open Setoid setoid using () renaming (refl to ≈-refl; trans to ≈-trans) | |
data Finite : Coℕ → Set where | |
zero : Finite zero | |
suc : ∀ {n} (r : Finite (♭ n)) → Finite (suc n) | |
data Infinite : Coℕ → Set where | |
suc : ∀ {n} (r : ∞ (Infinite (♭ n))) → Infinite (suc n) | |
¬fin⇒inf : ∀ {n} → ¬ Finite n → Infinite n | |
¬fin⇒inf {zero} f = ⊥-elim (f zero) | |
¬fin⇒inf {suc n} f = suc (♯ (¬fin⇒inf (f ∘ suc))) | |
neither : ∀ {n} → ¬ Finite n → ¬ Infinite n → ⊥ | |
neither f t = t (¬fin⇒inf f) | |
inf-∞ : ∀ {i} → Infinite i → ∞ℕ ≈ i | |
inf-∞ (suc r) = suc (♯ inf-∞ (♭ r)) | |
module _ where | |
data _≤_ : Coℕ → Coℕ → Set where | |
z≤n : ∀ {n} → zero ≤ n | |
s≤s : ∀ {m n} (m≤n : ∞ (♭ m ≤ ♭ n)) → suc m ≤ suc n | |
n≤∞ : ∀ n → n ≤ ∞ℕ | |
n≤∞ zero = z≤n | |
n≤∞ (suc n) = s≤s (♯ (n≤∞ (♭ n))) | |
∞≤n⇒n≈∞ : ∀ {n} → ∞ℕ ≤ n → n ≈ ∞ℕ | |
∞≤n⇒n≈∞ (s≤s ∞≤n) = suc (♯ ∞≤n⇒n≈∞ (♭ ∞≤n)) | |
≈⇒≤ : _≈_ ⇒ _≤_ | |
≈⇒≤ zero = z≤n | |
≈⇒≤ (suc m≈n) = s≤s (♯ (≈⇒≤ (♭ m≈n))) | |
≤-refl : ∀ n → n ≤ n | |
≤-refl zero = z≤n | |
≤-refl (suc n) = s≤s (♯ (≤-refl (♭ n))) | |
≤-trans : ∀ {i j k} → i ≤ j → j ≤ k → i ≤ k | |
≤-trans z≤n j≤k = z≤n | |
≤-trans (s≤s i≤j) (s≤s j≤k) = s≤s (♯ (≤-trans (♭ i≤j) (♭ j≤k))) | |
lowerBound : ∀ {p} {P : Coℕ → Set p} → Decidable P → Coℕ | |
lowerBound P? with P? zero | |
lowerBound P? | yes p = zero | |
lowerBound P? | no ¬p = suc (♯ lowerBound (P? ∘ suc ∘′ ♯_)) | |
lowerBound-≤ : ∀ {p} {P : Coℕ → Set p} (R : P Respects _≈_) (P? : Decidable P) (exists : ∃ P) → lowerBound P? ≤ proj₁ exists | |
lowerBound-≤ R P? _ with P? zero | |
lowerBound-≤ R P? _ | yes p = z≤n | |
lowerBound-≤ R P? (zero , pf) | no ¬p = ⊥-elim (¬p pf) | |
lowerBound-≤ R P? (suc n , pf) | no ¬p = s≤s (♯ lowerBound-≤ (R ∘′ suc ∘′ ♯_) _ (, R (suc (♯ ≈-refl)) pf)) | |
lowerBound-Finite : ∀ {p} {P : Coℕ → Set p} (R : P Respects _≈_) (P? : Decidable P) → Finite (lowerBound P?) → P (lowerBound P?) | |
lowerBound-Finite R P? F with P? zero | |
lowerBound-Finite R P? F | yes p = p | |
lowerBound-Finite R P? (suc F) | no ¬p = R (suc (♯ ≈-refl)) (lowerBound-Finite (R ∘′ suc ∘′ ♯_) _ F) | |
proof : ∀ {p} {P : Coℕ → Set p} (R : P Respects _≈_) (P? : Decidable P) → ¬ P (lowerBound P?) → ¬ ∃ P | |
proof R P? ¬P (n , pf) = neither | |
(λ fin → ¬P (lowerBound-Finite R P? fin)) | |
(λ inf → let ≈∞ = inf-∞ inf in | |
¬P (R (≈-trans (∞≤n⇒n≈∞ (≤-trans (≈⇒≤ ≈∞) (lowerBound-≤ R P? (n , pf)))) ≈∞) pf)) | |
impossible : ∀ {p} {P : Coℕ → Set p} (R : P Respects _≈_) (P? : Decidable P) → Dec (∃ P) | |
impossible R P? with P? (lowerBound P?) | |
impossible R P? | yes p = yes (, p) | |
impossible R P? | no ¬p = no (proof R P? ¬p) | |
weird : ∀ {a b p} {A : Set a} {B : Set b} | |
(f : Coℕ → A) (fpf : _≈_ =[ f ]⇒ _≡_) | |
(g : Coℕ → B) (gpf : _≈_ =[ g ]⇒ _≡_) | |
{P : A → B → Set p} | |
→ (∀ x y → Dec (P x y)) → Dec (∀ x → P (f x) (g x)) | |
weird f fpf g gpf {P} P? with impossible (λ eq ¬p p → ¬p (PropEq.subst₂ P (≡-sym (fpf eq)) (≡-sym (gpf eq)) p)) (λ x → ¬? (P? (f x) (g x))) | |
weird f fpf g gpf P? | yes (w , pf) = no (λ f → pf (f w)) | |
weird f fpf g gpf {P} P? | no ¬p = yes helper | |
where | |
helper : ∀ n → P (f n) (g n) | |
helper n with P? (f n) (g n) | |
helper n | yes p = p | |
helper n | no ¬p′ = ⊥-elim (¬p (n , ¬p′)) | |
module Tests where | |
open import Data.Nat hiding (_+_; _≤_; module _≤_) | |
eqℕ? : (x : ℕ) (y : Coℕ) → Dec (fromℕ x ≈ y) | |
eqℕ? zero zero = yes zero | |
eqℕ? zero (suc y) = no (λ ()) | |
eqℕ? (suc x) zero = no (λ ()) | |
eqℕ? (suc x) (suc y) with eqℕ? x (♭ y) | |
eqℕ? (suc x) (suc y) | yes p = yes (suc (♯ p)) | |
eqℕ? (suc x) (suc y) | no ¬p = no (λ { (suc n) → ¬p (♭ n) }) | |
false : Coℕ → Dec ⊥ | |
false n = no id | |
P : Coℕ → Set | |
P n = fromℕ 1 ≈ (n + n) | |
P? : ∀ n → Dec (P n) | |
P? n = eqℕ? 1 (n + n) | |
+-R : ∀ {a b c d} → a ≈ b → c ≈ d → (a + c) ≈ (b + d) | |
+-R zero c≈d = c≈d | |
+-R (suc a≈b) c≈d = suc (♯ (+-R (♭ a≈b) c≈d)) | |
R : P Respects _≈_ | |
R x≈y p = ≈-trans p (+-R x≈y x≈y) | |
x = impossible (flip ≈-trans) (eqℕ? 2) -- should say yes and give us a Coℕ 2 | |
y = impossible (λ _ → id) false -- should say no, since false is never true | |
z = impossible R P? -- should say no, because P is never true, but the proof will be much more complicated :) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment