Last active
July 6, 2019 13:59
-
-
Save copumpkin/6746324 to your computer and use it in GitHub Desktop.
Structurally recursive unification à la McBride
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Unify where | |
-- Translated from http://strictlypositive.org/unify.ps.gz | |
open import Data.Empty | |
import Data.Maybe as Maybe | |
open Maybe hiding (map) | |
open import Data.Nat | |
open import Data.Fin | |
open import Data.Product hiding (map) | |
open import Relation.Binary.PropositionalEquality | |
_>>=_ : ∀ {A B : Set} → Maybe A → (A → Maybe B) → Maybe B | |
just x >>= f = f x | |
nothing >>= f = nothing | |
data Term (n : ℕ) : Set where | |
ι : (i : Fin n) → Term n | |
leaf : Term n | |
_fork_ : (s t : Term n) → Term n | |
map : ∀ {m n} → (Fin m → Fin n) → Fin m → Term n | |
map r i = ι (r i) | |
bind : ∀ {m n} → (Fin m → Term n) → Term m → Term n | |
bind f (ι i) = f i | |
bind f leaf = leaf | |
bind f (s fork t) = (bind f s) fork (bind f t) | |
compose : ∀ {m n l} → (Fin m → Term n) → (Fin l → Term m) → (Fin l → Term n) | |
compose f g i = bind f (g i) | |
thin : ∀ {n} → Fin (suc n) → Fin n → Fin (suc n) | |
thin zero y = suc y | |
thin (suc x) zero = zero | |
thin (suc x) (suc y) = suc (thin x y) | |
data Thick {n} (x : Fin (suc n)) : Fin (suc n) → Set where | |
yes : (y : Fin n) → Thick x (thin x y) | |
no : Thick x x | |
thick : ∀ {n} -> (x y : Fin (suc n)) -> Thick x y | |
thick zero zero = no | |
thick zero (suc y) = yes y | |
thick {zero} (suc ()) _ | |
thick {suc _} (suc x) zero = yes zero | |
thick {suc _} (suc x) (suc y) with thick x y | |
thick {suc _} (suc x) (suc ._) | yes y = yes (suc y) | |
thick {suc _} (suc x) (suc ._) | no = no | |
_for_ : ∀ {n} → Term n → Fin (suc n) → Fin (suc n) → Term n | |
(t for x) y with thick x y | |
(t for x) ._ | yes z = ι z | |
(t for x) ._ | no = t | |
data Occurs {n} (x : Fin (suc n)) : Term (suc n) → Set where | |
ι : Occurs x (ι x) | |
forkˡ : ∀ {s′ t′} (s : Occurs x s′) → Occurs x (s′ fork t′) | |
forkʳ : ∀ {s′ t′} (t : Occurs x t′) → Occurs x (s′ fork t′) | |
data Check {n} (x : Fin (suc n)) : Term (suc n) → Set where | |
yes : (c : Term n) → Check x (bind (map (thin x)) c) | |
no : ∀ {t} (o : Occurs x t) → Check x t | |
check : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → Check x t | |
check x (ι i) with thick x i | |
check x (ι ._) | yes y = yes (ι y) | |
check x (ι ._) | no = no ι | |
check x leaf = yes leaf | |
check x (s fork t) with check x s | check x t | |
check x (._ fork ._) | yes q | yes r = yes (q fork r) | |
check x (s fork t) | _ | no ¬r = no (forkʳ ¬r) | |
check x (s fork t) | no ¬q | _ = no (forkˡ ¬q) | |
data AList : (m n : ℕ) → Set where | |
nil : ∀ {n} → AList n n | |
snoc : ∀ {m n} (as : AList m n) (a : Term m) (i : Fin (suc m)) → AList (suc m) n | |
comp : ∀ {m n l} → AList m n → AList l m → AList l n | |
comp as nil = as | |
comp as (snoc bs b i) = snoc (comp as bs) b i | |
sub : ∀ {m n} → AList m n → Fin m → Term n | |
sub nil = ι | |
sub (snoc as a i) = compose (sub as) (a for i) | |
flexFlex : ∀ {n} (x y : Fin n) → ∃ (AList n) | |
flexFlex {zero} () () | |
flexFlex {suc n} x y with thick x y | |
flexFlex {suc n} x ._ | yes t = , snoc nil (ι t) x | |
flexFlex {suc n} x ._ | no = , nil | |
flexRigid : ∀ {n} → Fin n → Term n → Maybe (∃ (AList n)) | |
flexRigid {zero} () t | |
flexRigid {suc n} x t with check x t | |
flexRigid {suc n} x ._ | yes c = just (, (snoc nil c x)) | |
flexRigid {suc n} x ._ | no o = nothing | |
amgu : ∀ {n} (s t : Term n) → ∃ (AList n) → Maybe (∃ (AList n)) | |
amgu leaf leaf xs = just xs | |
amgu leaf (t fork t₁) xs = nothing | |
amgu (s fork s₁) leaf xs = nothing | |
amgu (s fork s₁) (t fork t₁) xs = amgu s t xs >>= amgu s₁ t₁ | |
amgu (ι x) (ι y) (n , nil) = just (flexFlex x y) | |
amgu (ι x) t (n , nil) = flexRigid x t | |
amgu s (ι y) (n , nil) = flexRigid y s | |
amgu s t (n , snoc xs x i) with amgu (bind (x for i) s) (bind (x for i) t) (, xs) | |
amgu s t (n , snoc xs x i) | just a = just (, (snoc (proj₂ a) x i)) | |
amgu s t (n , snoc xs x i) | nothing = nothing | |
mgu : ∀ {n} (s t : Term n) → Maybe (∃ (AList n)) | |
mgu s t = amgu s t (, nil) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment