Created
May 11, 2018 19:24
-
-
Save coreyauger/a6a0c504dbfd7b9ad42f0a985e0a9f8b to your computer and use it in GitHub Desktop.
simple lstm model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import os | |
import dtdata as dt | |
import matplotlib.pyplot as plt | |
import math | |
import random | |
import pprint as pp | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import MinMaxScaler, StandardScaler | |
from sklearn import preprocessing | |
from sklearn.decomposition import PCA | |
from keras.preprocessing import sequence | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional, Flatten, TimeDistributed | |
from keras.optimizers import RMSprop, Adam | |
from keras.callbacks import ModelCheckpoint | |
from keras import regularizers | |
from functools import reduce | |
# fix random seed for reproducibility | |
np.random.seed(90210) | |
num_classes = 5 | |
input_size = 256 | |
epochs = 25 | |
path =r'/home/suroot/Documents/train/daytrader/ema-crossover' # path to data | |
savePath =r'/home/suroot/Documents/train/daytrader/' | |
(data, labels) = dt.cacheLoadData(path, num_classes, input_size) | |
data = np.reshape(data, [data.shape[0], data.shape[1],1] ) | |
print(data.shape) | |
x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2) | |
print("Y shape: "+str(y_train.shape)) | |
print("X shape: "+str(x_train.shape)) | |
batch_size = 128 | |
timesteps = data.shape[1] | |
# modified from here: https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py | |
model = Sequential() | |
#model.add(Embedding(max_features, 128, input_length=maxlen)) | |
#model.add(Bidirectional(LSTM(timesteps,return_sequences=True, stateful=False), batch_input_shape=(batch_size, timesteps, 1))) | |
model.add(LSTM(timesteps, input_shape=(timesteps,1), return_sequences=True)) | |
model.add(LSTM(timesteps, input_shape=(timesteps,1), return_sequences=True)) | |
model.add(Dropout(0.3)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.01))) | |
model.add(Dropout(0.4)) | |
model.add(Dense(num_classes, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False), | |
metrics=['accuracy']) | |
# checkpoint | |
modelPath= savePath+"lstm-{epoch:02d}-{val_acc:.2f}.hdf5" | |
checkpoint = ModelCheckpoint(modelPath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') | |
print('Train...') | |
history = model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=2, | |
callbacks=[checkpoint], | |
validation_data=(x_test, y_test)) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) | |
dt.plotHistory(history) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment