Last active
July 15, 2022 15:09
-
-
Save corochann/22ae506123805e1ddece529d8db5b692 to your computer and use it in GitHub Desktop.
Manual Scheduling of optimizer's learning rate with Chainer trainer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import chainer | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer import training | |
from chainer.optimizers import MomentumSGD, Adam | |
from chainer.training import extensions, Trainer | |
from chainer import serializers | |
opts = { | |
'mom': MomentumSGD, | |
'adam': Adam, | |
} | |
class MLP(chainer.Chain): | |
def __init__(self, n_units, n_out): | |
super(MLP, self).__init__() | |
with self.init_scope(): | |
self.l1 = L.Linear(None, n_units) | |
self.l2 = L.Linear(None, n_units) | |
self.l3 = L.Linear(None, n_out) | |
def __call__(self, x): | |
h1 = F.relu(self.l1(x)) | |
h2 = F.relu(self.l2(h1)) | |
return self.l3(h2) | |
def schedule_optimizer_value(epoch_list, value_list, optimizer_name='main', attr_name='lr'): | |
"""Set optimizer's hyperparameter according to value_list, scheduled on epoch_list. | |
Example usage: | |
trainer.extend(schedule_optimizer_value([2, 4, 7], [0.008, 0.006, 0.002])) | |
""" | |
if isinstance(epoch_list, list): | |
assert len(epoch_list) == len(value_list) | |
else: | |
assert isinstance(epoch_list, float) or isinstance(epoch_list, int) | |
assert isinstance(value_list, float) or isinstance(value_list, int) | |
epoch_list = [epoch_list, ] | |
value_list = [value_list, ] | |
trigger = chainer.training.triggers.ManualScheduleTrigger(epoch_list, 'epoch') | |
count = 0 | |
@chainer.training.extension.make_extension(trigger=trigger) | |
def set_value(trainer: Trainer): | |
nonlocal count | |
optimizer = trainer.updater.get_optimizer(optimizer_name) | |
setattr(optimizer, attr_name, value_list[count]) | |
count += 1 | |
return set_value | |
def main(): | |
parser = argparse.ArgumentParser(description='Chainer example: MNIST') | |
parser.add_argument('--batchsize', '-b', type=int, default=100, | |
help='Number of images in each mini-batch') | |
parser.add_argument('--epoch', '-e', type=int, default=20, | |
help='Number of sweeps over the dataset to train') | |
parser.add_argument('--gpu', '-g', type=int, default=-1, | |
help='GPU ID (negative value indicates CPU)') | |
parser.add_argument('--out', default='result', | |
help='Directory to output the result') | |
parser.add_argument('--opt', '-o', default='mom', | |
help='Optimizer') | |
parser.add_argument('--resume', '-r', default='', | |
help='Resume the training from snapshot') | |
parser.add_argument('--unit', '-u', type=int, default=50, | |
help='Number of units') | |
args = parser.parse_args() | |
print('GPU: {}'.format(args.gpu)) | |
print('# unit: {}'.format(args.unit)) | |
print('# Minibatch-size: {}'.format(args.batchsize)) | |
print('# epoch: {}'.format(args.epoch)) | |
print('') | |
# Set up a neural network to train | |
# Classifier reports softmax cross entropy loss and accuracy at every | |
# iteration, which will be used by the PrintReport extension below. | |
model = MLP(args.unit, 10) | |
classifier_model = L.Classifier(model) | |
if args.gpu >= 0: | |
chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current | |
classifier_model.to_gpu() # Copy the model to the GPU | |
# Setup an optimizer | |
optimizer = opts[args.opt]() | |
optimizer.setup(classifier_model) | |
# Load the MNIST dataset | |
train, test = chainer.datasets.get_mnist() | |
train_iter = chainer.iterators.SerialIterator(train, args.batchsize) | |
test_iter = chainer.iterators.SerialIterator(test, args.batchsize, repeat=False, shuffle=False) | |
updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu) | |
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) | |
trainer.extend(extensions.Evaluator(test_iter, classifier_model, device=args.gpu)) | |
trainer.extend(extensions.dump_graph('main/loss')) | |
trainer.extend(extensions.snapshot(), trigger=(1, 'epoch')) | |
trainer.extend(extensions.LogReport()) | |
# --- observe_lr --- | |
trainer.extend(extensions.observe_lr()) | |
# --- Manually schedule learning rate --- | |
# --- Example usage: schedule learning rate as follows --- | |
# lr = 0.008 at epoch 2 | |
# lr = 0.006 at epoch 4 | |
# lr = 0.002 at epoch 7 | |
trainer.extend(schedule_optimizer_value([2, 4, 7], [0.008, 0.006, 0.002])) | |
# trainer.extend(schedule_optimizer_value(3.5, 0.008)) | |
# trainer.extend(schedule_optimizer_value(3.5, 0.008, attr_name='alpha')) # when optimizer is Adam | |
trainer.extend(extensions.PrintReport( | |
['epoch', 'main/loss', 'validation/main/loss', | |
'main/accuracy', 'validation/main/accuracy', 'lr', 'elapsed_time'])) | |
# Plot graph for loss for each epoch | |
trainer.extend(extensions.PlotReport( | |
['main/loss', 'validation/main/loss'], | |
x_key='epoch', file_name='loss.png')) | |
trainer.extend(extensions.PlotReport( | |
['main/accuracy', 'validation/main/accuracy'], | |
x_key='epoch', | |
file_name='accuracy.png')) | |
#trainer.extend(extensions.ProgressBar()) | |
if args.resume: | |
# Resume from a snapshot | |
serializers.load_npz(args.resume, trainer) | |
# Run the training | |
trainer.run() | |
serializers.save_npz('{}/mlp.model'.format(args.out), model) | |
if __name__ == '__main__': | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment