Last active
June 10, 2019 03:10
-
-
Save cotramarko/8d8d13c27bc0ad78616447276fb8e360 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
class MotionModel(): | |
def __init__(self, A, Q): | |
self.A = A | |
self.Q = Q | |
(m, _) = Q.shape | |
self.zero_mean = np.zeros(m) | |
def __call__(self, x): | |
new_state = self.A @ x + np.random.multivariate_normal(self.zero_mean, self.Q) | |
return new_state | |
class MeasurementModel(): | |
def __init__(self, H, R): | |
self.H = H | |
self.R = R | |
(n, _) = R.shape | |
self.zero_mean = np.zeros(n) | |
def __call__(self, x): | |
measurement = self.H @ x + np.random.multivariate_normal(self.zero_mean, self.R) | |
return measurement | |
def create_model_parameters(T=1, s2_x=0.1 ** 2, s2_y=0.1 ** 2, lambda2=0.3 ** 2): | |
# Motion model parameters | |
F = np.array([[1, T], | |
[0, 1]]) | |
base_sigma = np.array([[T ** 3 / 3, T ** 2 / 2], | |
[T ** 2 / 2, T]]) | |
sigma_x = s2_x * base_sigma | |
sigma_y = s2_y * base_sigma | |
zeros_2 = np.zeros((2, 2)) | |
A = np.block([[F, zeros_2], | |
[zeros_2, F]]) | |
Q = np.block([[sigma_x, zeros_2], | |
[zeros_2, sigma_y]]) | |
# Measurement model parameters | |
H = np.array([[1, 0, 0, 0], | |
[0, 0, 1, 0]]) | |
R = lambda2 * np.eye(2) | |
return A, H, Q, R | |
def simulate_system(K, x0): | |
(A, H, Q, R) = create_model_parameters() | |
# Create models | |
motion_model = MotionModel(A, Q) | |
meas_model = MeasurementModel(H, R) | |
(m, _) = Q.shape | |
(n, _) = R.shape | |
state = np.zeros((K, m)) | |
meas = np.zeros((K, n)) | |
# initial state | |
x = x0 | |
for k in range(K): | |
x = motion_model(x) | |
z = meas_model(x) | |
state[k, :] = x | |
meas[k, :] = z | |
return state, meas | |
if __name__ == '__main__': | |
np.random.seed(21) | |
(state, meas) = simulate_system(K=20, x0=np.array([0, 0.1, 0, 0.1])) | |
plt.figure(figsize=(7, 5)) | |
plt.plot(state[:, 0], state[:, 2], '-bo') | |
plt.plot(meas[:, 0], meas[:, 1], 'rx') | |
plt.xlabel('x [m]') | |
plt.ylabel('y [m]') | |
plt.legend(['true state', 'observed measurement']) | |
plt.axis('square') | |
plt.tight_layout(pad=0) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment