Skip to content

Instantly share code, notes, and snippets.

View cotramarko's full-sized avatar

Marko Cotra cotramarko

View GitHub Profile
import numpy as np
import matplotlib.pyplot as plt
from kalman_filter import KalmanFilter
from simulate_model import simulate_system, create_model_parameters
np.random.seed(21)
(A, H, Q, R) = create_model_parameters()
K = 20
# initial state
import numpy as np
class KalmanFilter():
def __init__(self, A, H, Q, R, x_0, P_0):
# Model parameters
self.A = A
self.H = H
self.Q = Q
self.R = R
import numpy as np
import matplotlib.pyplot as plt
class MotionModel():
def __init__(self, A, Q):
self.A = A
self.Q = Q
(m, _) = Q.shape
# Pseudo code in Python of how the sensor fusion predict-update loop could look like
sf_algo = SFalgo(motion_model, measurement_model)
for (i, y) in enumerate(measurements):
if i == 0:
pred = sf_algo.predict(prior)
post = sf_algo.update(y, pred)
else:
pred = sf_algo.predict(post)
post = sf_algo.update(y, pred)