Created
January 13, 2021 06:54
-
-
Save cpfiffer/eddf1b06fab562d6d904987539f44b7c to your computer and use it in GitHub Desktop.
A super simple estimation of a function using its derivative.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Set up environment | |
import Pkg; Pkg.activate(".") | |
# Imports | |
using Distributions | |
using Plots | |
using Polynomials | |
using Optim | |
using ForwardDiff | |
# Test the projection method on the sin function | |
f(x) = sin(x) | |
df(x) = cos(x) | |
lower, upper = -5, 5 | |
K = 20 # Polynomial basis | |
T = 100 | |
xs = range(lower, upper, length=T) | |
ys = f.(xs) | |
dys = df.(xs) | |
function fit_model(a, xs) | |
poly = Polynomial(a) | |
f_hat = poly.(xs) | |
df_hat = (derivative(poly)).(xs) | |
ℓ = sum((dys - df_hat) .^ 2) | |
# p = plot(xs, ys) | |
# plot!(p, xs, f_hat) | |
# display(p) | |
return ℓ | |
end | |
init = zeros(K) | |
init[1] = 0.5 | |
init[2] = 0.25 | |
target(x) = fit_model(x, xs) | |
function dtarget(G, x) | |
return ForwardDiff.gradient!(G, target, x) | |
end | |
# opt = optimize(target, dtarget, init, SimulatedAnnealing(), Optim.Options(iterations=1_000)) | |
# opt = optimize(target, dtarget, init, NelderMead(), Optim.Options(iterations=10_000)) | |
opt = optimize(target, init, LBFGS(), Optim.Options(iterations=1_000)) | |
# opt = optimize(target, dtarget, init, LBFGS(), Optim.Options(iterations=100_000)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment