Created
December 12, 2017 13:29
-
-
Save cphyc/7beaec7fca42e9365e54092b4e91fdf0 to your computer and use it in GitHub Desktop.
Solve equation of movement including shell crossing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from astropy import constants as C | |
from tqdm import tqdm | |
import os | |
import h5py | |
N = 10000 | |
nsteps = 1_000 | |
iout = 10 | |
def do_dump(i): | |
return i % iout == 0 | |
def dump(i, R, M, v, order): | |
fname = os.path.join('output', f'{i:05d}.h5') | |
with h5py.File(fname, 'w') as f: | |
f['R'] = R | |
f['M'] = M | |
f['v'] = v | |
f['order'] = order | |
def main(): | |
R0 = np.geomspace(1e-4, 1, N) | |
M0 = 4*np.pi*R0**2*np.gradient(R0) | |
R = R0.copy() | |
M = M0.copy() | |
v = np.zeros(N) # (np.random.rand(N) - 0.5) / 100 | |
rho = np.zeros(N) | |
# Temp quantities | |
Mo = np.zeros(N) | |
vo = np.zeros(N) | |
Ro = np.zeros(N) | |
Mino = np.zeros(N) | |
Fo = np.zeros(N) | |
# Gravitational constant | |
G = C.G.cgs.value | |
history = [] | |
for i in tqdm(range(nsteps)): | |
order = np.argsort(R) | |
Mo[:] = M[order] | |
vo[:] = v[order] | |
Ro[:] = R[order] | |
# Compute inside mass | |
Mino[:] = np.cumsum(Mo) - Mo | |
# Compute acceleration of shell [force / m] | |
Fo[:] = -G * Mino / Ro**2 | |
# Compute timestep [|R / a|**(1/2)] | |
dt = np.sqrt(np.abs(Ro / Fo)).min() / 100 | |
# Evolve velocity | |
v[order] += dt*Fo | |
# Evolve radii | |
R[order] += dt*v | |
# Spherical symmetry R = |R| | |
R = np.abs(R) | |
# Compute rho | |
rho[order] = Mino / (4*np.pi/3*Ro**3) | |
if do_dump(i): | |
dump(i, R, M, v, order) | |
if __name__ == '__main__': | |
os.makedirs('output', exist_ok=True) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment