Created
October 23, 2024 00:47
-
-
Save cppio/51f017cd9f5521cf926b3c8fcb52bfa5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| inductive Fin2 : (n : Nat) → Type | |
| | zero : Fin2 (.succ n) | |
| | succ (i : Fin2 n) : Fin2 n.succ | |
| def Fin2.elim0 {C : Fin2 .zero → Sort u} : ∀ i, C i := nofun | |
| def Fin2.cases {C : Fin2 (.succ n) → Sort u} (zero : C .zero) (succ : ∀ i, C (.succ i)) : ∀ i, C i | |
| | .zero => zero | |
| | .succ i => succ i | |
| def congrArg₂' {α : Sort u} {β : α → Prop} {γ : Sort v} (f : ∀ x, β x → γ) {x₁ x₂ : α} (h : x₁ = x₂) {y₁ : β x₁} {y₂ : β x₂} : f x₁ y₁ = f x₂ y₂ := | |
| match x₂, h with | |
| | _, rfl => rfl | |
| def finite_choice | |
| {α : Fin2 n → Sort u} | |
| {r : ∀ i, α i → α i → Prop} | |
| (f : ∀ i, Quot (r i)) | |
| {β : Sort v} | |
| (g : (∀ i, α i) → β) | |
| (h : ∀ f₁ f₂, (∀ i, f₁ i = f₂ i ∨ r i (f₁ i) (f₂ i)) → g f₁ = g f₂) | |
| : β := | |
| match n with | |
| | .zero => g Fin2.elim0 | |
| | .succ _ => f .zero |>.lift | |
| (fun fz => finite_choice (fun i => f i.succ) (fun fs => g <| Fin2.cases fz fs) fun _ _ hs => h _ _ <| Fin2.cases (.inl rfl) hs) | |
| fun _ _ hz => congrArg₂' (finite_choice _) <| funext fun _ => by exact h _ _ <| Fin2.cases (.inr hz) fun _ => .inl rfl | |
| theorem finite_choice_mk f {β g h} : @finite_choice n α r (fun i => .mk _ (f i)) β g h = g f := | |
| match n with | |
| | .zero => congrArg g <| funext Fin2.elim0 | |
| | .succ _ => (finite_choice_mk fun i => f i.succ).trans <| congrArg g <| funext <| Fin2.cases rfl fun _ => rfl | |
| opaque ULower (α : Sort u) : Type | |
| unsafe def ULower.down : α → ULower α := unsafeCast | |
| unsafe def ULower.up : ULower α → α := unsafeCast | |
| private unsafe def choice.impl | |
| {α : Sort u} | |
| [DecidableEq α] | |
| {β : α → Sort v} | |
| {s : ∀ x, Setoid (β x)} | |
| (f : ∀ x, Quotient (s x)) | |
| {γ : Sort w} | |
| (g : (∀ x, β x) → γ) | |
| (_ : ∀ f₁ f₂, (∀ x, (s x).r (f₁ x) (f₂ x)) → g f₁ = g f₂) | |
| : γ := | |
| ULower.up <| unsafeBaseIO do | |
| let entriesRef ← IO.mkRef #[] | |
| return .down <| g fun x => | |
| ULower.up <| unsafeBaseIO do | |
| let entries ← entriesRef.get | |
| if let some entry := entries.find? (fun entry : ULower (PSigma β) => entry.up.fst = x) then | |
| return .down <| unsafeCast entry.up.snd | |
| let y := unsafeCast (f x) | |
| entriesRef.set <| entries.push <| .down ⟨x, y⟩ | |
| return .down y | |
| @[implemented_by choice.impl] | |
| def choice | |
| {α : Sort u} | |
| [DecidableEq α] | |
| {β : α → Sort v} | |
| {s : ∀ x, Setoid (β x)} | |
| (f : ∀ x, Quotient (s x)) | |
| {γ : Sort w} | |
| (g : (∀ x, β x) → γ) | |
| (h : ∀ f₁ f₂, (∀ x, (s x).r (f₁ x) (f₂ x)) → g f₁ = g f₂) | |
| : γ := | |
| g fun x => Classical.choose (f x).exists_rep | |
| theorem choice_mk [DecidableEq α] {β s} f {γ g h} : @choice α _ β s (fun x => .mk _ (f x)) γ g h = g f := | |
| h _ _ fun x => Quotient.exact <| Classical.choose_spec (Quotient.mk (s x) (f x)).exists_rep | |
| private unsafe def countable_choice.impl | |
| {α : Nat → Sort u} | |
| {s : ∀ n, Setoid (α n)} | |
| (f : ∀ n, Quotient (s n)) | |
| {β : Sort v} | |
| (g : (∀ n, α n) → β) | |
| (_ : ∀ f₁ f₂, (∀ n, (s n).r (f₁ n) (f₂ n)) → g f₁ = g f₂) | |
| : β := | |
| g (unsafeCast f) | |
| @[implemented_by countable_choice.impl] | |
| def countable_choice : | |
| {α : Nat → Sort u} → | |
| {s : ∀ n, Setoid (α n)} → | |
| (f : ∀ n, Quotient (s n)) → | |
| {β : Sort v} → | |
| (g : (∀ n, α n) → β) → | |
| (h : ∀ f₁ f₂, (∀ n, (s n).r (f₁ n) (f₂ n)) → g f₁ = g f₂) → | |
| β := | |
| @choice _ _ | |
| theorem countable_choice_mk : ∀ {α s} f {β g h}, @countable_choice α s (fun i => .mk _ (f i)) β g h = g f := | |
| @choice_mk _ _ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment