Created
March 23, 2025 17:31
-
-
Save cppio/7817200b0cea6c89a44943416d648576 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inductive Le (x : Nat) : (y : Nat) → Prop | |
| refl : Le x x | |
| step : Le x y → Le x y.succ | |
inductive Ge (x : Nat) : (y : Nat) → Prop | |
| refl : Ge x x | |
| step : Ge x y.succ → Ge x y | |
inductive Le' : (x y : Nat) → Prop | |
| zero : Le' .zero y | |
| succ : Le' x y → Le' x.succ y.succ | |
theorem Le.step' : Le x.succ y → Le x y | |
| refl => step refl | |
| step h => step (step' h) | |
theorem Le.zero : ∀ {y}, Le .zero y | |
| .zero => refl | |
| .succ _ => step zero | |
theorem Le.succ : Le x y → Le x.succ y.succ | |
| refl => refl | |
| step h => step (succ h) | |
theorem Ge.step' : Ge x y → Ge x.succ y | |
| refl => step refl | |
| step h => step (step' h) | |
theorem Ge.zero : ∀ {x}, Ge x .zero | |
| .zero => refl | |
| .succ _ => step' zero | |
theorem Ge.succ : Ge x y → Ge x.succ y.succ | |
| refl => refl | |
| step h => step (succ h) | |
theorem Le'.refl : ∀ {x}, Le' x x | |
| .zero => zero | |
| .succ _ => succ refl | |
theorem Le'.step : Le' x y → Le' x y.succ | |
| zero => zero | |
| succ h => succ (step h) | |
theorem Le'.step' : Le' x.succ y → Le' x y | |
| succ h => step h |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment