Created
May 30, 2025 17:09
-
-
Save cppio/87653b6a753166815d25bdb482bdfaef to your computer and use it in GitHub Desktop.
Girard-Hurkens paradox in Agda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --rewriting --confluence-check #-} | |
module Hurkens where | |
open import Agda.Builtin.Equality | |
import Agda.Builtin.Equality.Rewrite | |
postulate | |
Π₁ : (Set₁ → Set₁) → Set₁ | |
λ₁ : ∀ {F} → (∀ A → F A) → Π₁ F | |
_[_]₁ : ∀ {F} → Π₁ F → ∀ A → F A | |
β₁ : ∀ {F} f A → λ₁ {F = F} f [ A ]₁ ≡ f A | |
Π₀ : (A : Set₁) → (A → Set) → Set | |
λ₀ : ∀ {A B} → (∀ x → B x) → Π₀ A B | |
_[_]₀ : ∀ {A B} → Π₀ A B → ∀ x → B x | |
{-# REWRITE β₁ #-} | |
𝒫_ : Set₁ → Set₁ | |
𝒫 S = S → Set | |
U : Set₁ | |
U = Π₁ λ A → (𝒫 𝒫 A → A) → 𝒫 𝒫 A | |
τ : 𝒫 𝒫 U → U | |
τ t = λ₁ λ X f p → t λ x → p (f ((x [ X ]₁) f)) | |
σ : U → 𝒫 𝒫 U | |
σ s = (s [ U ]₁) τ | |
ind : 𝒫 𝒫 U | |
ind X = Π₀ U λ x → σ x X → X x | |
wf : ∀ X → ind X → X (τ ind) | |
wf X hX = (hX [ τ ind ]₀) (λ₀ λ x hx → (hX [ _ ]₀) hx) | |
⊥ : ∀ A → A | |
⊥ A = wf | |
(λ y → (Π₀ (𝒫 U) (λ X → σ y X → X (τ (σ y)))) → A) | |
(λ₀ λ x hx h → (h [ _ ]₀) hx (λ₀ λ X → h [ _ ]₀)) | |
(λ₀ λ X → wf _) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment