Created
October 1, 2024 17:20
-
-
Save cppio/d6cf3adf0b5fff4c6a2d68e6810e6a7f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Batteries.WF | |
abbrev ExistsAfter (P : Nat → Prop) := Acc fun y x => y = x.succ ∧ ¬P x | |
inductive Nat.ge (n : Nat) : Nat → Prop | |
| refl : ge n n | |
| step : ge n m.succ → ge n m | |
theorem Nat.ge_succ : ge n m → ge n.succ m | |
| .refl => .step .refl | |
| .step h => .step <| ge_succ h | |
theorem Nat.ge_zero : ∀ n, ge n 0 | |
| zero => .refl | |
| succ n => ge_succ (ge_zero n) | |
theorem ExistsAfter.mk (hn : P n) (hnm : n.ge m) : ExistsAfter P m := | |
by induction hnm <;> constructor <;> rintro _ ⟨rfl, _⟩ <;> trivial | |
theorem ExistsAfter.ofExists : (∃ n, P n) → ExistsAfter P 0 | |
| ⟨n, hn⟩ => mk hn n.ge_zero | |
variable {P : Nat → Prop} [DecidablePred P] | |
def markovAfter : ExistsAfter P n → { n // P n } := | |
Acc.rec fun n _ ih => if hn : P n then ⟨n, hn⟩ else ih _ ⟨rfl, hn⟩ | |
def markov (h : ∃ n, P n) : { n // P n } := | |
markovAfter <| .ofExists h |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment