Skip to content

Instantly share code, notes, and snippets.

library(sf)
library(dplyr)
library(albersusa)
library(crosstalk)
library(plotly)
usa <- usa_sf("laea")
# st_centroid gets the center POINT of polygons
uscenter <- usa %>%
@cpsievert
cpsievert / europe.R
Last active December 1, 2017 23:05 — forked from halhen/europe.R
library(tidyverse)
library(plotly)
# I'm being lazy, please don't do this
# setwd("~/Downloads/Version 2_0_1/")
d <- read_csv('GEOSTAT_grid_POP_1K_2011_V2_0_1.csv') %>%
rbind(read_csv('JRC-GHSL_AIT-grid-POP_1K_2011.csv') %>%
mutate(TOT_P_CON_DT = '')) %>%
mutate(
library(crosstalk)
library(htmltools)
m <- SharedData$new(mtcars)
set_values <- function(w, sharedData, values) {
script <- sprintf(
"HTMLWidgets.addPostRenderHandler(function() { return crosstalk.group('%s').var('%s').set(%s); })",
sharedData$groupName(), "filter", jsonlite::toJSON(values)
)
library(plotly)
library(tidyr)
library(crosstalk)
m <- gather(mtcars, variable, value, -vs)
msd <- SharedData$new(m, ~variable)
gg <- ggplot(msd, aes(factor(vs), value)) +
geom_jitter(alpha = 0.3)
bscols(widths = c(11, 6, 6),
# devtools::install_github("ropensci/plotly")
library(plotly)
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
# shared data will make the polygons "query-able"
ncsd <- crosstalk::SharedData$new(nc)
p <- ggplot(ncsd) +
geom_sf(aes(fill = AREA, text = paste0(NAME, "\n", "FIPS: ", FIPS))) +
@cpsievert
cpsievert / animation-ipython.ipynb
Created February 27, 2017 19:45
Notebook for Microsoft Azure
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# setwd("~/Downloads")
readKMZ <- function(f = NULL) {
zip <- paste0(f, ".zip")
file.rename(f, zip)
unzip(zip)
geojsonio::geojson_read("doc.kml", what = "sp")
}
pts <- readKMZ("MWAHIST12282016.kmz")
@cpsievert
cpsievert / countryByArea.txt
Last active November 3, 2016 17:58
Countries by area
"country" "area"
"Russia" 17098246
"Canada" 9984670
"China" 9572900
"United States" 9525067
"Brazil" 8515767
"Australia" 7692024
"India" 3287263
"Argentina" 2780400
"Kazakhstan" 2724900
library(trelliscopecore)
library(dplyr)
library(plotly)
# cognostics data frame
iris_cog_df <- iris %>%
group_by(Species) %>%
summarise(
mean_sl = cog(mean(Sepal.Length), desc = "mean sepal length"),
mean_sw = cog(mean(Sepal.Width), desc = "mean sepal length"),
@cpsievert
cpsievert / app.R
Last active October 23, 2018 03:36
Targeting views
library(plotly)
library(shiny)
# compute a correlation matrix
correlation <- round(cor(mtcars), 3)
nms <- names(mtcars)
ui <- fluidPage(
mainPanel(
plotlyOutput("heat"),