Created
September 22, 2011 23:44
-
-
Save cracell/1236369 to your computer and use it in GitHub Desktop.
mozilla-release/gfx/cairo/cairo/src/cairo-matrix.c
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* cairo - a vector graphics library with display and print output | |
* | |
* Copyright © 2002 University of Southern California | |
* | |
* This library is free software; you can redistribute it and/or | |
* modify it either under the terms of the GNU Lesser General Public | |
* License version 2.1 as published by the Free Software Foundation | |
* (the "LGPL") or, at your option, under the terms of the Mozilla | |
* Public License Version 1.1 (the "MPL"). If you do not alter this | |
* notice, a recipient may use your version of this file under either | |
* the MPL or the LGPL. | |
* | |
* You should have received a copy of the LGPL along with this library | |
* in the file COPYING-LGPL-2.1; if not, write to the Free Software | |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
* You should have received a copy of the MPL along with this library | |
* in the file COPYING-MPL-1.1 | |
* | |
* The contents of this file are subject to the Mozilla Public License | |
* Version 1.1 (the "License"); you may not use this file except in | |
* compliance with the License. You may obtain a copy of the License at | |
* http://www.mozilla.org/MPL/ | |
* | |
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | |
* OF ANY KIND, either express or implied. See the LGPL or the MPL for | |
* the specific language governing rights and limitations. | |
* | |
* The Original Code is the cairo graphics library. | |
* | |
* The Initial Developer of the Original Code is University of Southern | |
* California. | |
* | |
* Contributor(s): | |
* Carl D. Worth <[email protected]> | |
*/ | |
#define _GNU_SOURCE | |
#include "cairoint.h" | |
#if _XOPEN_SOURCE >= 600 || defined (_ISOC99_SOURCE) | |
#define ISFINITE(x) isfinite (x) | |
#else | |
#define ISFINITE(x) ((x) * (x) >= 0.) /* check for NaNs */ | |
#endif | |
static void | |
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar); | |
static void | |
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix); | |
/** | |
* cairo_matrix_init_identity: | |
* @matrix: a #cairo_matrix_t | |
* | |
* Modifies @matrix to be an identity transformation. | |
**/ | |
void | |
cairo_matrix_init_identity (cairo_matrix_t *matrix) | |
{ | |
cairo_matrix_init (matrix, | |
1, 0, | |
0, 1, | |
0, 0); | |
} | |
slim_hidden_def(cairo_matrix_init_identity); | |
/** | |
* cairo_matrix_init: | |
* @matrix: a #cairo_matrix_t | |
* @xx: xx component of the affine transformation | |
* @yx: yx component of the affine transformation | |
* @xy: xy component of the affine transformation | |
* @yy: yy component of the affine transformation | |
* @x0: X translation component of the affine transformation | |
* @y0: Y translation component of the affine transformation | |
* | |
* Sets @matrix to be the affine transformation given by | |
* @xx, @yx, @xy, @yy, @x0, @y0. The transformation is given | |
* by: | |
* <programlisting> | |
* x_new = xx * x + xy * y + x0; | |
* y_new = yx * x + yy * y + y0; | |
* </programlisting> | |
**/ | |
void | |
cairo_matrix_init (cairo_matrix_t *matrix, | |
double xx, double yx, | |
double xy, double yy, | |
double x0, double y0) | |
{ | |
matrix->xx = xx; matrix->yx = yx; | |
matrix->xy = xy; matrix->yy = yy; | |
matrix->x0 = x0; matrix->y0 = y0; | |
} | |
slim_hidden_def(cairo_matrix_init); | |
/** | |
* _cairo_matrix_get_affine: | |
* @matrix: a #cairo_matrix_t | |
* @xx: location to store xx component of matrix | |
* @yx: location to store yx component of matrix | |
* @xy: location to store xy component of matrix | |
* @yy: location to store yy component of matrix | |
* @x0: location to store x0 (X-translation component) of matrix, or %NULL | |
* @y0: location to store y0 (Y-translation component) of matrix, or %NULL | |
* | |
* Gets the matrix values for the affine transformation that @matrix represents. | |
* See cairo_matrix_init(). | |
* | |
* | |
* This function is a leftover from the old public API, but is still | |
* mildly useful as an internal means for getting at the matrix | |
* members in a positional way. For example, when reassigning to some | |
* external matrix type, or when renaming members to more meaningful | |
* names (such as a,b,c,d,e,f) for particular manipulations. | |
**/ | |
void | |
_cairo_matrix_get_affine (const cairo_matrix_t *matrix, | |
double *xx, double *yx, | |
double *xy, double *yy, | |
double *x0, double *y0) | |
{ | |
*xx = matrix->xx; | |
*yx = matrix->yx; | |
*xy = matrix->xy; | |
*yy = matrix->yy; | |
if (x0) | |
*x0 = matrix->x0; | |
if (y0) | |
*y0 = matrix->y0; | |
} | |
/** | |
* cairo_matrix_init_translate: | |
* @matrix: a #cairo_matrix_t | |
* @tx: amount to translate in the X direction | |
* @ty: amount to translate in the Y direction | |
* | |
* Initializes @matrix to a transformation that translates by @tx and | |
* @ty in the X and Y dimensions, respectively. | |
**/ | |
void | |
cairo_matrix_init_translate (cairo_matrix_t *matrix, | |
double tx, double ty) | |
{ | |
cairo_matrix_init (matrix, | |
1, 0, | |
0, 1, | |
tx, ty); | |
} | |
slim_hidden_def(cairo_matrix_init_translate); | |
/** | |
* cairo_matrix_translate: | |
* @matrix: a #cairo_matrix_t | |
* @tx: amount to translate in the X direction | |
* @ty: amount to translate in the Y direction | |
* | |
* Applies a translation by @tx, @ty to the transformation in | |
* @matrix. The effect of the new transformation is to first translate | |
* the coordinates by @tx and @ty, then apply the original transformation | |
* to the coordinates. | |
**/ | |
void | |
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty) | |
{ | |
cairo_matrix_t tmp; | |
cairo_matrix_init_translate (&tmp, tx, ty); | |
cairo_matrix_multiply (matrix, &tmp, matrix); | |
} | |
slim_hidden_def (cairo_matrix_translate); | |
/** | |
* cairo_matrix_init_scale: | |
* @matrix: a #cairo_matrix_t | |
* @sx: scale factor in the X direction | |
* @sy: scale factor in the Y direction | |
* | |
* Initializes @matrix to a transformation that scales by @sx and @sy | |
* in the X and Y dimensions, respectively. | |
**/ | |
void | |
cairo_matrix_init_scale (cairo_matrix_t *matrix, | |
double sx, double sy) | |
{ | |
cairo_matrix_init (matrix, | |
sx, 0, | |
0, sy, | |
0, 0); | |
} | |
slim_hidden_def(cairo_matrix_init_scale); | |
/** | |
* cairo_matrix_scale: | |
* @matrix: a #cairo_matrix_t | |
* @sx: scale factor in the X direction | |
* @sy: scale factor in the Y direction | |
* | |
* Applies scaling by @sx, @sy to the transformation in @matrix. The | |
* effect of the new transformation is to first scale the coordinates | |
* by @sx and @sy, then apply the original transformation to the coordinates. | |
**/ | |
void | |
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy) | |
{ | |
cairo_matrix_t tmp; | |
cairo_matrix_init_scale (&tmp, sx, sy); | |
cairo_matrix_multiply (matrix, &tmp, matrix); | |
} | |
slim_hidden_def(cairo_matrix_scale); | |
/** | |
* cairo_matrix_init_rotate: | |
* @matrix: a #cairo_matrix_t | |
* @radians: angle of rotation, in radians. The direction of rotation | |
* is defined such that positive angles rotate in the direction from | |
* the positive X axis toward the positive Y axis. With the default | |
* axis orientation of cairo, positive angles rotate in a clockwise | |
* direction. | |
* | |
* Initialized @matrix to a transformation that rotates by @radians. | |
**/ | |
void | |
cairo_matrix_init_rotate (cairo_matrix_t *matrix, | |
double radians) | |
{ | |
double s; | |
double c; | |
s = sin (radians); | |
c = cos (radians); | |
cairo_matrix_init (matrix, | |
c, s, | |
-s, c, | |
0, 0); | |
} | |
slim_hidden_def(cairo_matrix_init_rotate); | |
/** | |
* cairo_matrix_rotate: | |
* @matrix: a #cairo_matrix_t | |
* @radians: angle of rotation, in radians. The direction of rotation | |
* is defined such that positive angles rotate in the direction from | |
* the positive X axis toward the positive Y axis. With the default | |
* axis orientation of cairo, positive angles rotate in a clockwise | |
* direction. | |
* | |
* Applies rotation by @radians to the transformation in | |
* @matrix. The effect of the new transformation is to first rotate the | |
* coordinates by @radians, then apply the original transformation | |
* to the coordinates. | |
**/ | |
void | |
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians) | |
{ | |
cairo_matrix_t tmp; | |
cairo_matrix_init_rotate (&tmp, radians); | |
cairo_matrix_multiply (matrix, &tmp, matrix); | |
} | |
/** | |
* cairo_matrix_multiply: | |
* @result: a #cairo_matrix_t in which to store the result | |
* @a: a #cairo_matrix_t | |
* @b: a #cairo_matrix_t | |
* | |
* Multiplies the affine transformations in @a and @b together | |
* and stores the result in @result. The effect of the resulting | |
* transformation is to first apply the transformation in @a to the | |
* coordinates and then apply the transformation in @b to the | |
* coordinates. | |
* | |
* It is allowable for @result to be identical to either @a or @b. | |
**/ | |
/* | |
* XXX: The ordering of the arguments to this function corresponds | |
* to [row_vector]*A*B. If we want to use column vectors instead, | |
* then we need to switch the two arguments and fix up all | |
* uses. | |
*/ | |
void | |
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b) | |
{ | |
cairo_matrix_t r; | |
r.xx = a->xx * b->xx + a->yx * b->xy; | |
r.yx = a->xx * b->yx + a->yx * b->yy; | |
r.xy = a->xy * b->xx + a->yy * b->xy; | |
r.yy = a->xy * b->yx + a->yy * b->yy; | |
r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0; | |
r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0; | |
*result = r; | |
} | |
slim_hidden_def(cairo_matrix_multiply); | |
/** | |
* cairo_matrix_transform_distance: | |
* @matrix: a #cairo_matrix_t | |
* @dx: X component of a distance vector. An in/out parameter | |
* @dy: Y component of a distance vector. An in/out parameter | |
* | |
* Transforms the distance vector (@dx,@dy) by @matrix. This is | |
* similar to cairo_matrix_transform_point() except that the translation | |
* components of the transformation are ignored. The calculation of | |
* the returned vector is as follows: | |
* | |
* <programlisting> | |
* dx2 = dx1 * a + dy1 * c; | |
* dy2 = dx1 * b + dy1 * d; | |
* </programlisting> | |
* | |
* Affine transformations are position invariant, so the same vector | |
* always transforms to the same vector. If (@x1,@y1) transforms | |
* to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to | |
* (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2. | |
**/ | |
void | |
cairo_matrix_transform_distance (const cairo_matrix_t *matrix, double *dx, double *dy) | |
{ | |
double new_x, new_y; | |
new_x = (matrix->xx * *dx + matrix->xy * *dy); | |
new_y = (matrix->yx * *dx + matrix->yy * *dy); | |
*dx = new_x; | |
*dy = new_y; | |
} | |
slim_hidden_def(cairo_matrix_transform_distance); | |
/** | |
* cairo_matrix_transform_point: | |
* @matrix: a #cairo_matrix_t | |
* @x: X position. An in/out parameter | |
* @y: Y position. An in/out parameter | |
* | |
* Transforms the point (@x, @y) by @matrix. | |
**/ | |
void | |
cairo_matrix_transform_point (const cairo_matrix_t *matrix, double *x, double *y) | |
{ | |
cairo_matrix_transform_distance (matrix, x, y); | |
*x += matrix->x0; | |
*y += matrix->y0; | |
} | |
slim_hidden_def(cairo_matrix_transform_point); | |
void | |
_cairo_matrix_transform_bounding_box (const cairo_matrix_t *matrix, | |
double *x1, double *y1, | |
double *x2, double *y2, | |
cairo_bool_t *is_tight) | |
{ | |
int i; | |
double quad_x[4], quad_y[4]; | |
double min_x, max_x; | |
double min_y, max_y; | |
if (matrix->xy == 0. && matrix->yx == 0.) { | |
/* non-rotation/skew matrix, just map the two extreme points */ | |
if (matrix->xx != 1.) { | |
quad_x[0] = *x1 * matrix->xx; | |
quad_x[1] = *x2 * matrix->xx; | |
if (quad_x[0] < quad_x[1]) { | |
*x1 = quad_x[0]; | |
*x2 = quad_x[1]; | |
} else { | |
*x1 = quad_x[1]; | |
*x2 = quad_x[0]; | |
} | |
} | |
if (matrix->x0 != 0.) { | |
*x1 += matrix->x0; | |
*x2 += matrix->x0; | |
} | |
if (matrix->yy != 1.) { | |
quad_y[0] = *y1 * matrix->yy; | |
quad_y[1] = *y2 * matrix->yy; | |
if (quad_y[0] < quad_y[1]) { | |
*y1 = quad_y[0]; | |
*y2 = quad_y[1]; | |
} else { | |
*y1 = quad_y[1]; | |
*y2 = quad_y[0]; | |
} | |
} | |
if (matrix->y0 != 0.) { | |
*y1 += matrix->y0; | |
*y2 += matrix->y0; | |
} | |
if (is_tight) | |
*is_tight = TRUE; | |
return; | |
} | |
/* general matrix */ | |
quad_x[0] = *x1; | |
quad_y[0] = *y1; | |
cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]); | |
quad_x[1] = *x2; | |
quad_y[1] = *y1; | |
cairo_matrix_transform_point (matrix, &quad_x[1], &quad_y[1]); | |
quad_x[2] = *x1; | |
quad_y[2] = *y2; | |
cairo_matrix_transform_point (matrix, &quad_x[2], &quad_y[2]); | |
quad_x[3] = *x2; | |
quad_y[3] = *y2; | |
cairo_matrix_transform_point (matrix, &quad_x[3], &quad_y[3]); | |
min_x = max_x = quad_x[0]; | |
min_y = max_y = quad_y[0]; | |
for (i=1; i < 4; i++) { | |
if (quad_x[i] < min_x) | |
min_x = quad_x[i]; | |
if (quad_x[i] > max_x) | |
max_x = quad_x[i]; | |
if (quad_y[i] < min_y) | |
min_y = quad_y[i]; | |
if (quad_y[i] > max_y) | |
max_y = quad_y[i]; | |
} | |
*x1 = min_x; | |
*y1 = min_y; | |
*x2 = max_x; | |
*y2 = max_y; | |
if (is_tight) { | |
/* it's tight if and only if the four corner points form an axis-aligned | |
rectangle. | |
And that's true if and only if we can derive corners 0 and 3 from | |
corners 1 and 2 in one of two straightforward ways... | |
We could use a tolerance here but for now we'll fall back to FALSE in the case | |
of floating point error. | |
*/ | |
*is_tight = | |
(quad_x[1] == quad_x[0] && quad_y[1] == quad_y[3] && | |
quad_x[2] == quad_x[3] && quad_y[2] == quad_y[0]) || | |
(quad_x[1] == quad_x[3] && quad_y[1] == quad_y[0] && | |
quad_x[2] == quad_x[0] && quad_y[2] == quad_y[3]); | |
} | |
} | |
cairo_private void | |
_cairo_matrix_transform_bounding_box_fixed (const cairo_matrix_t *matrix, | |
cairo_box_t *bbox, | |
cairo_bool_t *is_tight) | |
{ | |
double x1, y1, x2, y2; | |
_cairo_box_to_doubles (bbox, &x1, &y1, &x2, &y2); | |
_cairo_matrix_transform_bounding_box (matrix, &x1, &y1, &x2, &y2, is_tight); | |
_cairo_box_from_doubles (bbox, &x1, &y1, &x2, &y2); | |
} | |
static void | |
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar) | |
{ | |
matrix->xx *= scalar; | |
matrix->yx *= scalar; | |
matrix->xy *= scalar; | |
matrix->yy *= scalar; | |
matrix->x0 *= scalar; | |
matrix->y0 *= scalar; | |
} | |
/* This function isn't a correct adjoint in that the implicit 1 in the | |
homogeneous result should actually be ad-bc instead. But, since this | |
adjoint is only used in the computation of the inverse, which | |
divides by det (A)=ad-bc anyway, everything works out in the end. */ | |
static void | |
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix) | |
{ | |
/* adj (A) = transpose (C:cofactor (A,i,j)) */ | |
double a, b, c, d, tx, ty; | |
_cairo_matrix_get_affine (matrix, | |
&a, &b, | |
&c, &d, | |
&tx, &ty); | |
cairo_matrix_init (matrix, | |
d, -b, | |
-c, a, | |
c*ty - d*tx, b*tx - a*ty); | |
} | |
/** | |
* cairo_matrix_invert: | |
* @matrix: a #cairo_matrix_t | |
* | |
* Changes @matrix to be the inverse of its original value. Not | |
* all transformation matrices have inverses; if the matrix | |
* collapses points together (it is <firstterm>degenerate</firstterm>), | |
* then it has no inverse and this function will fail. | |
* | |
* Returns: If @matrix has an inverse, modifies @matrix to | |
* be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise, | |
* returns %CAIRO_STATUS_INVALID_MATRIX. | |
**/ | |
cairo_status_t | |
cairo_matrix_invert (cairo_matrix_t *matrix) | |
{ | |
double det; | |
/* Simple scaling|translation matrices are quite common... */ | |
if (matrix->xy == 0. && matrix->yx == 0.) { | |
matrix->x0 = -matrix->x0; | |
matrix->y0 = -matrix->y0; | |
if (matrix->xx != 1.) { | |
if (matrix->xx == 0.) | |
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX); | |
matrix->xx = 1. / matrix->xx; | |
matrix->x0 *= matrix->xx; | |
} | |
if (matrix->yy != 1.) { | |
if (matrix->yy == 0.) | |
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX); | |
matrix->yy = 1. / matrix->yy; | |
matrix->y0 *= matrix->yy; | |
} | |
return CAIRO_STATUS_SUCCESS; | |
} | |
/* inv (A) = 1/det (A) * adj (A) */ | |
det = _cairo_matrix_compute_determinant (matrix); | |
if (! ISFINITE (det)) | |
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX); | |
if (det == 0) | |
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX); | |
_cairo_matrix_compute_adjoint (matrix); | |
_cairo_matrix_scalar_multiply (matrix, 1 / det); | |
return CAIRO_STATUS_SUCCESS; | |
} | |
slim_hidden_def(cairo_matrix_invert); | |
cairo_bool_t | |
_cairo_matrix_is_invertible (const cairo_matrix_t *matrix) | |
{ | |
double det; | |
det = _cairo_matrix_compute_determinant (matrix); | |
return ISFINITE (det) && det != 0.; | |
} | |
double | |
_cairo_matrix_compute_determinant (const cairo_matrix_t *matrix) | |
{ | |
double a, b, c, d; | |
a = matrix->xx; b = matrix->yx; | |
c = matrix->xy; d = matrix->yy; | |
return a*d - b*c; | |
} | |
/** | |
* _cairo_matrix_compute_basis_scale_factors: | |
* @matrix: a matrix | |
* @basis_scale: the scale factor in the direction of basis | |
* @normal_scale: the scale factor in the direction normal to the basis | |
* @x_basis: basis to use. X basis if true, Y basis otherwise. | |
* | |
* Computes |Mv| and det(M)/|Mv| for v=[1,0] if x_basis is true, and v=[0,1] | |
* otherwise, and M is @matrix. | |
* | |
* Return value: the scale factor of @matrix on the height of the font, | |
* or 1.0 if @matrix is %NULL. | |
**/ | |
cairo_status_t | |
_cairo_matrix_compute_basis_scale_factors (const cairo_matrix_t *matrix, | |
double *basis_scale, double *normal_scale, | |
cairo_bool_t x_basis) | |
{ | |
double det; | |
det = _cairo_matrix_compute_determinant (matrix); | |
if (! ISFINITE (det)) | |
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX); | |
if (det == 0) | |
{ | |
*basis_scale = *normal_scale = 0; | |
} | |
else | |
{ | |
double x = x_basis != 0; | |
double y = x == 0; | |
double major, minor; | |
cairo_matrix_transform_distance (matrix, &x, &y); | |
major = hypot (x, y); | |
/* | |
* ignore mirroring | |
*/ | |
if (det < 0) | |
det = -det; | |
if (major) | |
minor = det / major; | |
else | |
minor = 0.0; | |
if (x_basis) | |
{ | |
*basis_scale = major; | |
*normal_scale = minor; | |
} | |
else | |
{ | |
*basis_scale = minor; | |
*normal_scale = major; | |
} | |
} | |
return CAIRO_STATUS_SUCCESS; | |
} | |
cairo_bool_t | |
_cairo_matrix_is_identity (const cairo_matrix_t *matrix) | |
{ | |
return (matrix->xx == 1.0 && matrix->yx == 0.0 && | |
matrix->xy == 0.0 && matrix->yy == 1.0 && | |
matrix->x0 == 0.0 && matrix->y0 == 0.0); | |
} | |
cairo_bool_t | |
_cairo_matrix_is_translation (const cairo_matrix_t *matrix) | |
{ | |
return (matrix->xx == 1.0 && matrix->yx == 0.0 && | |
matrix->xy == 0.0 && matrix->yy == 1.0); | |
} | |
cairo_bool_t | |
_cairo_matrix_is_integer_translation (const cairo_matrix_t *matrix, | |
int *itx, int *ity) | |
{ | |
if (_cairo_matrix_is_translation (matrix)) | |
{ | |
cairo_fixed_t x0_fixed = _cairo_fixed_from_double (matrix->x0); | |
cairo_fixed_t y0_fixed = _cairo_fixed_from_double (matrix->y0); | |
if (_cairo_fixed_is_integer (x0_fixed) && | |
_cairo_fixed_is_integer (y0_fixed)) | |
{ | |
if (itx) | |
*itx = _cairo_fixed_integer_part (x0_fixed); | |
if (ity) | |
*ity = _cairo_fixed_integer_part (y0_fixed); | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
cairo_bool_t | |
_cairo_matrix_has_unity_scale (const cairo_matrix_t *matrix) | |
{ | |
if (matrix->xy == 0.0 && matrix->yx == 0.0) { | |
if (! (matrix->xx == 1.0 || matrix->xx == -1.0)) | |
return FALSE; | |
if (! (matrix->yy == 1.0 || matrix->yy == -1.0)) | |
return FALSE; | |
} else if (matrix->xx == 0.0 && matrix->yy == 0.0) { | |
if (! (matrix->xy == 1.0 || matrix->xy == -1.0)) | |
return FALSE; | |
if (! (matrix->yx == 1.0 || matrix->yx == -1.0)) | |
return FALSE; | |
} else | |
return FALSE; | |
return TRUE; | |
} | |
/* By pixel exact here, we mean a matrix that is composed only of | |
* 90 degree rotations, flips, and integer translations and produces a 1:1 | |
* mapping between source and destination pixels. If we transform an image | |
* with a pixel-exact matrix, filtering is not useful. | |
*/ | |
cairo_bool_t | |
_cairo_matrix_is_pixel_exact (const cairo_matrix_t *matrix) | |
{ | |
cairo_fixed_t x0_fixed, y0_fixed; | |
if (! _cairo_matrix_has_unity_scale (matrix)) | |
return FALSE; | |
x0_fixed = _cairo_fixed_from_double (matrix->x0); | |
y0_fixed = _cairo_fixed_from_double (matrix->y0); | |
return _cairo_fixed_is_integer (x0_fixed) && _cairo_fixed_is_integer (y0_fixed); | |
} | |
/* | |
A circle in user space is transformed into an ellipse in device space. | |
The following is a derivation of a formula to calculate the length of the | |
major axis for this ellipse; this is useful for error bounds calculations. | |
Thanks to Walter Brisken <[email protected]> for this derivation: | |
1. First some notation: | |
All capital letters represent vectors in two dimensions. A prime ' | |
represents a transformed coordinate. Matrices are written in underlined | |
form, ie _R_. Lowercase letters represent scalar real values. | |
2. The question has been posed: What is the maximum expansion factor | |
achieved by the linear transformation | |
X' = X _R_ | |
where _R_ is a real-valued 2x2 matrix with entries: | |
_R_ = [a b] | |
[c d] . | |
In other words, what is the maximum radius, MAX[ |X'| ], reached for any | |
X on the unit circle ( |X| = 1 ) ? | |
3. Some useful formulae | |
(A) through (C) below are standard double-angle formulae. (D) is a lesser | |
known result and is derived below: | |
(A) sin²(θ) = (1 - cos(2*θ))/2 | |
(B) cos²(θ) = (1 + cos(2*θ))/2 | |
(C) sin(θ)*cos(θ) = sin(2*θ)/2 | |
(D) MAX[a*cos(θ) + b*sin(θ)] = sqrt(a² + b²) | |
Proof of (D): | |
find the maximum of the function by setting the derivative to zero: | |
-a*sin(θ)+b*cos(θ) = 0 | |
From this it follows that | |
tan(θ) = b/a | |
and hence | |
sin(θ) = b/sqrt(a² + b²) | |
and | |
cos(θ) = a/sqrt(a² + b²) | |
Thus the maximum value is | |
MAX[a*cos(θ) + b*sin(θ)] = (a² + b²)/sqrt(a² + b²) | |
= sqrt(a² + b²) | |
4. Derivation of maximum expansion | |
To find MAX[ |X'| ] we search brute force method using calculus. The unit | |
circle on which X is constrained is to be parameterized by t: | |
X(θ) = (cos(θ), sin(θ)) | |
Thus | |
X'(θ) = X(θ) * _R_ = (cos(θ), sin(θ)) * [a b] | |
[c d] | |
= (a*cos(θ) + c*sin(θ), b*cos(θ) + d*sin(θ)). | |
Define | |
r(θ) = |X'(θ)| | |
Thus | |
r²(θ) = (a*cos(θ) + c*sin(θ))² + (b*cos(θ) + d*sin(θ))² | |
= (a² + b²)*cos²(θ) + (c² + d²)*sin²(θ) | |
+ 2*(a*c + b*d)*cos(θ)*sin(θ) | |
Now apply the double angle formulae (A) to (C) from above: | |
r²(θ) = (a² + b² + c² + d²)/2 | |
+ (a² + b² - c² - d²)*cos(2*θ)/2 | |
+ (a*c + b*d)*sin(2*θ) | |
= f + g*cos(φ) + h*sin(φ) | |
Where | |
f = (a² + b² + c² + d²)/2 | |
g = (a² + b² - c² - d²)/2 | |
h = (a*c + d*d) | |
φ = 2*θ | |
It is clear that MAX[ |X'| ] = sqrt(MAX[ r² ]). Here we determine MAX[ r² ] | |
using (D) from above: | |
MAX[ r² ] = f + sqrt(g² + h²) | |
And finally | |
MAX[ |X'| ] = sqrt( f + sqrt(g² + h²) ) | |
Which is the solution to this problem. | |
Walter Brisken | |
2004/10/08 | |
(Note that the minor axis length is at the minimum of the above solution, | |
which is just sqrt ( f - sqrt(g² + h²) ) given the symmetry of (D)). | |
For another derivation of the same result, using Singular Value Decomposition, | |
see doc/tutorial/src/singular.c. | |
*/ | |
/* determine the length of the major axis of a circle of the given radius | |
after applying the transformation matrix. */ | |
double | |
_cairo_matrix_transformed_circle_major_axis (const cairo_matrix_t *matrix, | |
double radius) | |
{ | |
double a, b, c, d, f, g, h, i, j; | |
_cairo_matrix_get_affine (matrix, | |
&a, &b, | |
&c, &d, | |
NULL, NULL); | |
i = a*a + b*b; | |
j = c*c + d*d; | |
f = 0.5 * (i + j); | |
g = 0.5 * (i - j); | |
h = a*c + b*d; | |
return radius * sqrt (f + hypot (g, h)); | |
/* | |
* we don't need the minor axis length, which is | |
* double min = radius * sqrt (f - sqrt (g*g+h*h)); | |
*/ | |
} | |
void | |
_cairo_matrix_to_pixman_matrix (const cairo_matrix_t *matrix, | |
pixman_transform_t *pixman_transform, | |
double xc, | |
double yc) | |
{ | |
static const pixman_transform_t pixman_identity_transform = {{ | |
{1 << 16, 0, 0}, | |
{ 0, 1 << 16, 0}, | |
{ 0, 0, 1 << 16} | |
}}; | |
if (_cairo_matrix_is_identity (matrix)) { | |
*pixman_transform = pixman_identity_transform; | |
} else { | |
cairo_matrix_t inv; | |
unsigned max_iterations; | |
pixman_transform->matrix[0][0] = _cairo_fixed_16_16_from_double (matrix->xx); | |
pixman_transform->matrix[0][1] = _cairo_fixed_16_16_from_double (matrix->xy); | |
pixman_transform->matrix[0][2] = _cairo_fixed_16_16_from_double (matrix->x0); | |
pixman_transform->matrix[1][0] = _cairo_fixed_16_16_from_double (matrix->yx); | |
pixman_transform->matrix[1][1] = _cairo_fixed_16_16_from_double (matrix->yy); | |
pixman_transform->matrix[1][2] = _cairo_fixed_16_16_from_double (matrix->y0); | |
pixman_transform->matrix[2][0] = 0; | |
pixman_transform->matrix[2][1] = 0; | |
pixman_transform->matrix[2][2] = 1 << 16; | |
/* The conversion above breaks cairo's translation invariance: | |
* a translation of (a, b) in device space translates to | |
* a translation of (xx * a + xy * b, yx * a + yy * b) | |
* for cairo, while pixman uses rounded versions of xx ... yy. | |
* This error increases as a and b get larger. | |
* | |
* To compensate for this, we fix the point (xc, yc) in pattern | |
* space and adjust pixman's transform to agree with cairo's at | |
* that point. | |
*/ | |
if (_cairo_matrix_is_translation (matrix)) | |
return; | |
/* Note: If we can't invert the transformation, skip the adjustment. */ | |
inv = *matrix; | |
if (cairo_matrix_invert (&inv) != CAIRO_STATUS_SUCCESS) | |
return; | |
/* find the pattern space coordinate that maps to (xc, yc) */ | |
xc += .5; yc += .5; /* offset for the pixel centre */ | |
max_iterations = 5; | |
do { | |
double x,y; | |
pixman_vector_t vector; | |
cairo_fixed_16_16_t dx, dy; | |
vector.vector[0] = _cairo_fixed_16_16_from_double (xc); | |
vector.vector[1] = _cairo_fixed_16_16_from_double (yc); | |
vector.vector[2] = 1 << 16; | |
if (! pixman_transform_point_3d (pixman_transform, &vector)) | |
return; | |
x = pixman_fixed_to_double (vector.vector[0]); | |
y = pixman_fixed_to_double (vector.vector[1]); | |
cairo_matrix_transform_point (&inv, &x, &y); | |
/* Ideally, the vector should now be (xc, yc). | |
* We can now compensate for the resulting error. | |
*/ | |
x -= xc; | |
y -= yc; | |
cairo_matrix_transform_distance (matrix, &x, &y); | |
dx = _cairo_fixed_16_16_from_double (x); | |
dy = _cairo_fixed_16_16_from_double (y); | |
pixman_transform->matrix[0][2] -= dx; | |
pixman_transform->matrix[1][2] -= dy; | |
if (dx == 0 && dy == 0) | |
break; | |
} while (--max_iterations); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment