Created
May 5, 2014 17:16
-
-
Save crawles/981ad8fb3f639dff9d75 to your computer and use it in GitHub Desktop.
S-wave
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Results ConNet S-wave" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import sys\nsys.path.append('/Users/chris/GoogleDrive/s-wave/current')\nimport obspy\nimport io_utils\nimport swave as sw\nimport os\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.backends.backend_pdf import PdfPages\nimport data_struc as data\nimport data_prep\nimport classifier\nimport metrics_spec\nimport plotting as pp\nimport copy\nimport wadati\nimport sliding_window as slide\nimport spec_utils\nimport spectrogram_cr1\n\n# params\ntesting = True\np_manual,s_manual = 'sac.t1','sac.t2'\np_auto,s_auto = None,'sac.t6'\nafter_p,end = .5,8\nsample_rate = 100.0\n\n# data\nobs_set_dir = \"/Users/chris/GoogleDrive/s-wave/current/data/parkfield/reloc/2002_reloc_sub\"#/te2_qte6\"\ntrain_set_dir = \"/Users/chris/GoogleDrive/s-wave/current/data/parkfield/2001_no_sact1t2/2001202004000\"#/te2_qte6\"\n#train_set_dir = None\n\n# read obs_set,train_set\nobs_set = io_utils.read_sac_dir(obs_set_dir,readZ = False) #no Z data read in\n\nif train_set_dir: #user supplied training set\n train_set = io_utils.read_sac_dir(train_set_dir,readZ = False)[0:10] #no Z data read in\nelse: #use default trainset\n train_set = data_prep.read_default_train()\n\n# prep data\nobs_set,train_set = data_prep.prep(obs_set,Train_set = train_set,\n Testing = testing, P_manual = p_manual,\n S_manual = s_manual, After_p = after_p, \n End = end, Sample_rate = sample_rate)\n\nobs_set_obj = data.Dataset(obs_set)\n\n# make pos and neg set\nS = data.Split(obs_set)\n#S.build_S_pos_neg('sac.t2',(-.33,.33),(1.17,1.83),train_set)\nS.build_S_pos_neg('sac.t2',(-.33,.33),(1.17,1.83),train_set)\n\n# classify\ntest_set = obs_set_obj\ngamma,n,beg,end = .01,40,0,10\ntest = classifier.Test(obs_set_obj,S.pos_set,S.neg_set,gamma)\nR_list = test.test(n)\nobs_set_obj.add_R_list(R_list)\n\n# make pick\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(test_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n\nw_man_obs_set = wadati.wadati(m.obs_set,'sac.t1','sac.t2',plot = False)\n\n# make pick\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(w_man_obs_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n\nw_app_obs_set = wadati.wadati(m.obs_set,'sac.t1','S_pick',plot = False)\n\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(w_app_obs_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import metrics", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "# make pick\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(test_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n\nw_man_obs_set = wadati.wadati(m.obs_set,'sac.t1','sac.t2',plot = False)\n\n# make pick\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(w_man_obs_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n\nw_app_obs_set = wadati.wadati(m.obs_set,'sac.t1','S_pick',plot = False)\n\nm = metrics.Metrics(beg,end)\nm.initialize_dataset(w_app_obs_set)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "obs_cp = copy.deepcopy(m.obs_set)\nspec_obs_full,spec_obs_cut = [],[]\ntr_t = []\nfor i,trs in enumerate(sw.pairwise(obs_cp)):\n tr,tr1 = trs[0],trs[1]\n spec_utils.add_max_spec_amp(tr)\n spec_utils.add_max_spec_amp(tr1)\n\n s_pick = tr.stats.sac.t2 - tr.stats.sac.b\n if .7 < s_pick < 2.3 and tr.stats.S_pick:\n spec_obs_full.append(copy.deepcopy(tr))\n spec_obs_full.append(copy.deepcopy(tr1))\n\n sw.trim_after_start_time(tr,0,3)\n sw.trim_after_start_time(tr1,0,3)\n\n spec_obs_cut.append(tr)\n spec_obs_cut.append(tr1)\n tr_t.append(s_pick)\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(spec_obs_cut)\nlen(spec_obs_full)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(spec_obs_cut)\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m = metrics.Metrics(beg,end)\nm.initialize_dataset(spec_obs_cut)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m = metrics.Metrics(beg,end)\nm.initialize_dataset(spec_obs_full)\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m = metrics.Metrics(beg,end)\nm.initialize_dataset(spec_obs_full[400:])\nm.add_max_R_pick_around_predicted('S_pick',1.25)\nm.residual_array('S_pick','sac.t2')\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m.percen_within(.1)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "output_f ='/Users/chris/GoogleDrive/cs760_final_project/DeepLearningTutorials-master/code/outputs/testoutputs16fromsundaynight/testOutput2.txt'\nfrom numpy import genfromtxt\nmy_data = genfromtxt(output_f, delimiter=',',skip_header = 6)\n\n###\n\nR_list = my_data\nspec_obs_cut_obj = data.Dataset(copy.deepcopy(spec_obs_cut[400:]))\nspec_obs_cut_obj.add_R_list(R_list)\n\nm11 = metrics_spec.Metrics(0,10)\nm11.initialize_dataset(spec_obs_cut_obj)\nm11.add_max_R_pick_around_predicted('S_pick',1.25)\nm11.residual_array('S_pick','sac.t2')\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "output_f ='/Users/chris/GoogleDrive/cs760_final_project/DeepLearningTutorials-master/code/outputs/testoutputs16fromsundaynight/testOutput2.txt'\nfrom numpy import genfromtxt\nmy_data = genfromtxt(output_f, delimiter=',',skip_header = 6)\n\n###\n\nR_list = my_data\nspec_obs_cut_obj = data.Dataset(copy.deepcopy(spec_obs_cut[400:]))\nspec_obs_cut_obj.add_R_list(R_list)\n\nm11 = metrics_spec.Metrics(0,10)\nm11.initialize_dataset(spec_obs_cut_obj)\nm11.add_max_R_pick_around_predicted('S_pick',1.25)\nm11.residual_array('S_pick','sac.t2')\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.1)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "output_f ='/Users/chris/GoogleDrive/cs760_final_project/DeepLearningTutorials-master/code/outputs/testoutputs16fromsundaynight/testOutput2.txt'\nfrom numpy import genfromtxt\nmy_data = genfromtxt(output_f, delimiter=',',skip_header = 6)\n\n###\n\nR_list = my_data\nspec_obs_cut_obj = data.Dataset(copy.deepcopy(spec_obs_cut[400:]))\nspec_obs_cut_obj.add_R_list(R_list)\n\nm11 = metrics_spec.Metrics(0,10)\nm11.initialize_dataset(spec_obs_cut_obj)\nm11.add_max_R_pick_around_predicted('S_pick',1.25)\nm11.residual_array('S_pick','sac.t2',thresh = 0)\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.residual_array('S_pick','sac.t2',thresh = .25)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(m.resid)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(m11.resid)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.residual_array('S_pick','sac.t2',thresh = .75)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(m11.resid)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "def gen_metric(obs_set,thresh):\n spec_obs_cut_obj = data.Dataset(copy.deepcopy(obs_set))\n spec_obs_cut_obj.add_R_list(R_list)\n m11 = metrics_spec.Metrics(0,10)\n m11.initialize_dataset(spec_obs_cut_obj)\n m11.add_max_R_pick_around_predicted('S_pick',1.25)\n m11.residual_array('S_pick','sac.t2',thresh = 0)\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "def gen_metric(obs_set,thresh):\n spec_obs_cut_obj = data.Dataset(copy.deepcopy(obs_set))\n spec_obs_cut_obj.add_R_list(R_list)\n m11 = metrics_spec.Metrics(0,10)\n m11.initialize_dataset(spec_obs_cut_obj)\n m11.add_max_R_pick_around_predicted('S_pick',1.25)\n m11.residual_array('S_pick','sac.t2',thresh = 0)\n return m11\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11 = 1", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11 = gen_metric(spec_obs_cut[400:],thresh = 0)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "m11.percen_within(.2)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "!CLS", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "output_f ='/Users/chris/GoogleDrive/cs760_final_project/DeepLearningTutorials-master/code/outputs/testoutputs16fromsundaynight/testOutput'", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in xrange(6):\n suffix = str(i) + \".txt\"\n trial_results_file = output_f + suffix\n print trial_results_file", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "%matplotlib inline", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import matplotlib.pyplot as plt", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in xrange(6):\n suffix = str(i+1) + \".txt\"\n trial_results_file = output_f + suffix\n R_list = genfromtxt(trial_results_file, delimiter=',',skip_header = 6)\n \n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = 0)\n print \"Percen with .2, all : \", m11.percen_within(.2)\n print \"Percen with .1, all : \", m11.percen_within(.1)\n m11.plot_hist(15)\n \n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = .5)\n print \"Percen with .2, confidence > .5 : \", m11.percen_within(.2)\n print \"Percen with .1, confidence > .5 : \", m11.percen_within(.1)\n m11.plot_hist(15)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "def gen_metric(obs_set,R_list,thresh):\n spec_obs_cut_obj = data.Dataset(copy.deepcopy(obs_set))\n spec_obs_cut_obj.add_R_list(R_list)\n m11 = metrics_spec.Metrics(0,10)\n m11.initialize_dataset(spec_obs_cut_obj)\n m11.add_max_R_pick_around_predicted('S_pick',1.25)\n m11.residual_array('S_pick','sac.t2',thresh)\n return m11\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in xrange(6):\n suffix = str(i+1) + \".txt\"\n trial_results_file = output_f + suffix\n R_list = genfromtxt(trial_results_file, delimiter=',',skip_header = 6)\n \n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = 0)\n print \"Percen with .2, all : \", m11.percen_within(.2)\n print \"Percen with .1, all : \", m11.percen_within(.1)\n m11.plot_hist(15)\n plt.show()\n \n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = .5)\n print \"Percen with .2, confidence > .5 : \", m11.percen_within(.2)\n print \"Percen with .1, confidence > .5 : \", m11.percen_within(.1)\n m11.plot_hist(15)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in xrange(6):\n print \"textOuput\" + str(i+1)\n suffix = str(i+1) + \".txt\"\n trial_results_file = output_f + suffix\n R_list = genfromtxt(trial_results_file, delimiter=',',skip_header = 6)\n \n plt.close()\n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = 0)\n print \"Percen with .2, all : \", m11.percen_within(.2)\n print \"Percen with .1, all : \", m11.percen_within(.1)\n m11.plot_hist(15)\n plt.show()\n \n try:\n plt.close()\n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = .5)\n print \"Percen with .2, confidence > .5 : \", m11.percen_within(.2)\n print \"Percen with .1, confidence > .5 : \", m11.percen_within(.1) \n m11.plot_hist(8)\n plt.show()\n except:\n pass\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": "RESULTS" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in xrange(6):\n print \"textOuput\" + str(i+1)\n suffix = str(i+1) + \".txt\"\n trial_results_file = output_f + suffix\n R_list = genfromtxt(trial_results_file, delimiter=',',skip_header = 6)\n \n plt.close()\n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = 0)\n print \"Percen within .2, all : \", m11.percen_within(.2)\n print \"Percen within .1, all : \", m11.percen_within(.1)\n m11.plot_hist(15)\n plt.show()\n \n try:\n plt.close()\n m11 = gen_metric(spec_obs_cut[400:],R_list,thresh = .5)\n print \"Percen within .2, confidence > .5 : \", m11.percen_within(.2)\n print \"Percen within .1, confidence > .5 : \", m11.percen_within(.1) \n m11.plot_hist(8)\n plt.show()\n except:\n print \"NONE\"", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "textOuput1\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.92118226601\nPercen within .1, all : 0.773399014778\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF/JJREFUeJzt3X9sU9fdx/GPaZioofxINQxLsoGSsCT8cJyyRZNgMWMZ\nwxpRNtCUTrCoUCmlUNRKrRD7Z0GlrIw/EAiNhmljZZMIGppG1JmobOKy0TREouk0PalGMjWqEyAa\nsFDYioDkPH/w1E+DE/s6sRPn7P2SrmT7frn3q9Orj25PfHw9xhgjAIBVpkx0AwCA1CPcAcBChDsA\nWIhwBwALEe4AYCHCHQAs5CrcBwYGFAgEtG7duph9juNo1qxZCgQCCgQC2rNnT8qbBAAkJ8tN0cGD\nB1VSUqLbt28Pu7+iokJNTU0pbQwAMHoJ79x7enoUDof17LPPaqT1TqyDAoDMkjDcX3rpJe3fv19T\npgxf6vF41NLSIr/fr1AopI6OjpQ3CQBITtxwf+uttzR37lwFAoER787LysoUiUT017/+VS+88IKq\nq6vT0igAIAkmjl27dpnc3FyzYMECM2/ePOP1es2mTZvi/ROzYMECc+PGjZjP8/PzjSQ2NjY2tiS2\n/Pz8uJk7krjh/lmO45jvfOc7MZ9fu3bNDA4OGmOMuXjxovnSl740/Ink+lQT6sc//vFEt+AKfabO\nZOjRGPpMtcnS52iz09W3ZT7l8XgkSQ0NDZKkuro6nTp1SkeOHFFWVpa8Xq8aGxuTOSQAIA1ch3tF\nRYUqKiokPQz1T23btk3btm1LfWcAgFFjheojgsHgRLfgCn2mzmToUaLPVJssfY6W5//mdNJ/Io+H\n78MDQJJGm53cuQOAhQh3WG3mzGx5PB5X28yZ2RPdLpAyTMvAag+/4eX2uuMaReZhWgYAEEW4A4CF\nCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALCQq3AfGBhQIBDQunXrht2/\nY8cOFRYWyu/3q729PaUNAgCS5yrcDx48qJKSkuhj9j4rHA6rq6tLnZ2dOnr0qLZu3ZryJgEAyUkY\n7j09PQqHw3r22WeH/WWypqYm1dbWSpLKy8vV39+vvr6+1HcKAHAtYbi/9NJL2r9/v6ZMGb60t7dX\neXl50fe5ubnq6elJXYcAgKTFfUD2W2+9pblz5yoQCMhxnBHrHr2jH276RpLq6+ujr4PBoPXPMASA\nZDmOEzdv3Yr7sI4f/ehH+vWvf62srCzdvXtXH3/8sdavX6/jx49Ha5577jkFg0HV1NRIkoqKinT+\n/Hn5fL6hJ+JhHZgAPKwDk11aHtaxd+9eRSIRffjhh2psbNQ3vvGNIcEuSVVVVdHPWltbNXv27Jhg\nBwCMr7jTMo/6dLqloaFBklRXV6dQKKRwOKyCggJNnz5dx44dS32XAICk8AxVWI1pGUx2PEMVABBF\nuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHAQoQ7\nAFiIcAcACxHuAGChhOF+9+5dlZeXq7S0VCUlJdq1a1dMjeM4mjVrlgKBgAKBgPbs2ZOWZgEA7iR8\nzN60adN07tw5eb1ePXjwQCtWrNCFCxe0YsWKIXUVFRVqampKW6MAAPdcTct4vV5J0r179zQwMKDs\n7OyYGh5PBgCZw1W4Dw4OqrS0VD6fT6tWrVJJScmQ/R6PRy0tLfL7/QqFQuro6EhLswAAdxJOy0jS\nlClT9P777+vWrVtas2aNHMdRMBiM7i8rK1MkEpHX69WZM2dUXV2ty5cvxxynvr4++joYDA45BgDg\n4d8wHccZ83E8Jsn5lFdffVWPP/64Xn755RFrFi5cqEuXLg2ZvhntE7yBsfB4PJLcXndco8g8o83O\nhNMy169fV39/vyTpk08+0dmzZxUIBIbU9PX1RU/e1tYmY8yw8/IAgPGRcFrm6tWrqq2t1eDgoAYH\nB7Vp0yatXr1aDQ0NkqS6ujqdOnVKR44cUVZWlrxerxobG9PeOABgZElPy4z6REzLYAIwLYPJLm3T\nMgCAyYdwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4\nA4CFCHcAsBDhDgAWItwBwEJxw/3u3bsqLy9XaWmpSkpKtGvXrmHrduzYocLCQvn9frW3t6elUQCA\ne3Efszdt2jSdO3dOXq9XDx480IoVK3ThwgWtWLEiWhMOh9XV1aXOzk5dvHhRW7duVWtra9obBwCM\nLOG0jNfrlSTdu3dPAwMDMQ++bmpqUm1trSSpvLxc/f396uvrS0OrAAC3Eob74OCgSktL5fP5tGrV\nKpWUlAzZ39vbq7y8vOj73Nxc9fT0pL5TAIBrcadlJGnKlCl6//33devWLa1Zs0aO4ygYDA6pefTh\nrQ8fShyrvr4++joYDMYcBwD+2zmOI8dxxnwcj0nisdqvvvqqHn/8cb388svRz5577jkFg0HV1NRI\nkoqKinT+/Hn5fL6hJxrlE7yBsXh4o+H2uuMaReYZbXbGnZa5fv26+vv7JUmffPKJzp49q0AgMKSm\nqqpKx48flyS1trZq9uzZMcEOABhfcadlrl69qtraWg0ODmpwcFCbNm3S6tWr1dDQIEmqq6tTKBRS\nOBxWQUGBpk+frmPHjo1L4wCAkSU1LTOmEzEtgwnAtAwmu7RMywAAJifCHQAsRLgDgIUIdwCwEOEO\nABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKEOwBYKGG4RyIRrVq1\nSosXL9aSJUt06NChmBrHcTRr1iwFAgEFAgHt2bMnLc0CANxJ+IDsqVOn6sCBAyotLdWdO3f01FNP\nqbKyUsXFxUPqKioq1NTUlLZGAQDuJbxznzdvnkpLSyVJM2bMUHFxsa5cuRJTxxNsACBzJDXn3t3d\nrfb2dpWXlw/53OPxqKWlRX6/X6FQSB0dHSltEgCQnITTMp+6c+eONmzYoIMHD2rGjBlD9pWVlSkS\nicjr9erMmTOqrq7W5cuXU94sAMAdV+F+//59rV+/Xhs3blR1dXXM/ieeeCL6eu3atXr++ed18+ZN\nZWdnD6mrr6+Pvg4GgwoGg6PrGgAs5TiOHMcZ83E8JsFkuTFGtbW1evLJJ3XgwIFha/r6+jR37lx5\nPB61tbXp+9//vrq7u4eeaJRP8AbGwuPxSHJ73XGNIvOMNjsT3rm/8847+s1vfqNly5YpEAhIkvbu\n3auPPvpIklRXV6dTp07pyJEjysrKktfrVWNjY9KNAABSJ+Gde8pOxJ07JgB37pjsRpudrFAFAAsR\n7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEO\nABYi3IGoLHk8noTbzJnZiQ8FTDB+zx1WS/b33N3Vci1j/KTt99wjkYhWrVqlxYsXa8mSJTp06NCw\ndTt27FBhYaH8fr/a29uTbgQAkDoJH7M3depUHThwQKWlpbpz546eeuopVVZWqri4OFoTDofV1dWl\nzs5OXbx4UVu3blVra2taGwcAjCzhnfu8efNUWloqSZoxY4aKi4t15cqVITVNTU2qra2VJJWXl6u/\nv199fX1paBcA4EZSf1Dt7u5We3u7ysvLh3ze29urvLy86Pvc3Fz19PSkpkMAQNJch/udO3e0YcMG\nHTx4UDNmzIjZ/+iE/8M/ZAEAJkLCOXdJun//vtavX6+NGzequro6Zn9OTo4ikUj0fU9Pj3JycmLq\n6uvro6+DwaCCwWDyHQOAxRzHkeM4Yz5Owq9CGmNUW1urJ598UgcOHBi2JhwO6/DhwwqHw2ptbdWL\nL74Y8wdVvgqJicBXITHZjTY7E4b7hQsX9PWvf13Lli2LTrXs3btXH330kSSprq5OkrR9+3Y1Nzdr\n+vTpOnbsmMrKylLSIDAWhDsmu7SFe6oQ7pgIhDsmu7QtYgIATD6EOwBYiHAHAAsR7gBgIcIdACxE\nuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABZKGO6bN2+W\nz+fT0qVLh93vOI5mzZqlQCCgQCCgPXv2pLxJAEByEj4g+5lnntELL7ygH/7whyPWVFRUqKmpKaWN\nAQBGL+Gd+8qVKzVnzpy4NTxyDAAyy5jn3D0ej1paWuT3+xUKhdTR0ZGKvgAAY5BwWiaRsrIyRSIR\neb1enTlzRtXV1bp8+fKwtfX19dHXwWBQwWBwrKcHAKs4jiPHccZ8HI9xMafS3d2tdevW6W9/+1vC\nAy5cuFCXLl1Sdnb20BON8gnewFh4PB5Jbq87t7Vcyxg/o83OMU/L9PX1RU/c1tYmY0xMsAMAxlfC\naZmnn35a58+f1/Xr15WXl6fdu3fr/v37kqS6ujqdOnVKR44cUVZWlrxerxobG9PeNAAgPlfTMik5\nEdMymABMy2Cym7BpGQBA5iHcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHA\nQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsFDCcN+8ebN8Pp+WLl06Ys2OHTtUWFgov9+v9vb2\nlDYIAEhewnB/5pln1NzcPOL+cDisrq4udXZ26ujRo9q6dWtKGwQAJC9huK9cuVJz5swZcX9TU5Nq\na2slSeXl5erv71dfX1/qOgQAJG3Mc+69vb3Ky8uLvs/NzVVPT89YDwsAGIOsVBzk0Ye3Pnwocaz6\n+vro62AwqGAwmIrTA4A1HMeR4zhjPs6Ywz0nJ0eRSCT6vqenRzk5OcPWfjbcAQCxHr3x3b1796iO\nM+ZpmaqqKh0/flyS1NraqtmzZ8vn8431sACAMUh45/7000/r/Pnzun79uvLy8rR7927dv39fklRX\nV6dQKKRwOKyCggJNnz5dx44dS3vTAID4PObRCfN0ncjjiZmbB9Lt4d9/3F53bmu5ljF+RpudrFAF\nAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDScuSx+Nx\ntc2cmT3RzeK/FD8cBqul64fDkjkm1z3Ggh8OAwBEEe4AYCHCHQAs5Crcm5ubVVRUpMLCQu3bty9m\nv+M4mjVrlgKBgAKBgPbs2ZPyRgEA7iV8zN7AwIC2b9+uP/7xj8rJydFXvvIVVVVVqbi4eEhdRUWF\nmpqa0tYoAMC9hHfubW1tKigo0IIFCzR16lTV1NTo9OnTMXV8IwAAMkfCcO/t7VVeXl70fW5urnp7\ne4fUeDwetbS0yO/3KxQKqaOjI/WdAgBcSzgt8/B7wvGVlZUpEonI6/XqzJkzqq6u1uXLl2Pq6uvr\no6+DwaCCwWBSzQKA7RzHkeM4Yz5OwkVMra2tqq+vV3NzsyTpJz/5iaZMmaKdO3eO+G8WLlyoS5cu\nKTv7/1fnsYgJE4FFTJjs0raIafny5ers7FR3d7fu3bunkydPqqqqakhNX19f9ORtbW0yxgwJdgDA\n+Eo4LZOVlaXDhw9rzZo1GhgY0JYtW1RcXKyGhgZJUl1dnU6dOqUjR44oKytLXq9XjY2NaW8cADAy\nflsGVmNaBpMdvy0DAIgi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHdMOjNnZrt+QDXw34pF\nTJh00rMwKZlaFjFh/LCICQAQRbgDgIUIdwCwEOEOABYi3AHAQoQ7AFgoYbg3NzerqKhIhYWF2rdv\n37A1O3bsUGFhofx+v9rb21PeJAAgOXHDfWBgQNu3b1dzc7M6Ojp04sQJffDBB0NqwuGwurq61NnZ\nqaNHj2rr1q1pbTjdUvFg2vFAn6nkpPHYWa4XXM2cGf/RlJNjLOkzU8R9zF5bW5sKCgq0YMECSVJN\nTY1Onz6t4uLiaE1TU5Nqa2slSeXl5erv71dfX598Pl/6uk4jx3EUDAaH3feznx3VxYvu/s9k7tw5\n+ulPX0vbKsl4fWaSydGnIymYpmM/kNsFT7dvx79WJsdY0memiBvuvb29ysvLi77Pzc3VxYsXE9b0\n9PRM2nCP58CBo+rq+qakL7mofl4NDW/o9u1/Jax84ok5+vjjm2Pubyxmzsx21avkvt9Pj7l7924X\nR50q6b6r89srK+HNwKdjmQnXDDJb3HB3e9f56NJYW3/TY+rUKZo+/R099tj/JKy9fdvzf2GZ+K4t\n0R3beHDb68Nad/0+POaPJdW7qE72ZwJslOguv16fjmUmXDPIcCaOd99916xZsyb6fu/eveb1118f\nUlNXV2dOnDgRff/lL3/ZXLt2LeZY+fn5Rg+vXDY2NjY2l1t+fn68mB5R3Dv35cuXq7OzU93d3frC\nF76gkydP6sSJE0NqqqqqdPjwYdXU1Ki1tVWzZ88edkqmq6sr3qkAACkUN9yzsrJ0+PBhrVmzRgMD\nA9qyZYuKi4vV0NAgSaqrq1MoFFI4HFZBQYGmT5+uY8eOjUvjAICRjdtP/gIAxk/aVqi+8sorKi4u\nlt/v1/e+9z3dunVr2Do3i6TS6be//a0WL16sxx57TO+9996IdQsWLNCyZcsUCAT01a9+dRw7dN/j\nRI/lzZs3VVlZqUWLFulb3/qW+vv7h62bqLGcLAvyEvXpOI5mzZqlQCCgQCCgPXv2jHuPmzdvls/n\n09KlS0esyYSxTNRnJoylJEUiEa1atUqLFy/WkiVLdOjQoWHrkhrTUc3Uu/D222+bgYEBY4wxO3fu\nNDt37oypefDggcnPzzcffvihuXfvnvH7/aajoyNdLQ3rgw8+MH//+99NMBg0ly5dGrFuwYIF5saN\nG+PY2f9z02MmjOUrr7xi9u3bZ4wx5vXXXx/2v7kxEzOWbsbnD3/4g1m7dq0xxpjW1lZTXl4+rj26\n7fPcuXNm3bp1497bZ/35z3827733nlmyZMmw+zNhLI1J3GcmjKUxxly9etW0t7cbY4y5ffu2WbRo\n0Zivz7TduVdWVmrKlIeHLy8vV09PT0zNZxdJTZ06NbpIajwVFRVp0aJFrmrNBM1guekxE8byswva\namtr9fvf/37E2vEeSzfjM9KCvEzrU5q4a/FTK1eu1Jw5c0bcnwljKSXuU5r4sZSkefPmqbS0VJI0\nY8YMFRcX68qVK0Nqkh3TcfnhsF/+8pcKhUIxnw+3AKq3t3c8Wkqax+PRN7/5TS1fvlw///nPJ7qd\nGJkwlp9dmezz+Ua88CZiLN2Mz0gL8saTmz49Ho9aWlrk9/sVCoXU0dExrj26kQlj6UYmjmV3d7fa\n29tVXl4+5PNkxzTut2USqays1LVr12I+37t3r9atWydJeu211/S5z31OP/jBD2Lqxmuxk5s+E3nn\nnXc0f/58/fOf/1RlZaWKioq0cuXKjOlxosfytddei+lnpJ7SPZbDmSwL8tycr6ysTJFIRF6vV2fO\nnFF1dbUuX748Dt0lZ6LH0o1MG8s7d+5ow4YNOnjwoGbMmBGzP5kxHVO4nz17Nu7+X/3qVwqHw/rT\nn/407P6cnBxFIpHo+0gkotzc3LG0NKxEfboxf/58SdLnP/95ffe731VbW1tKA2msPWbCWPp8Pl27\ndk3z5s3T1atXNXfu3GHr0j2Ww3EzPo/W9PT0KCcnJ619PcpNn0888UT09dq1a/X888/r5s2bys6O\n/8Nj4ykTxtKNTBrL+/fva/369dq4caOqq6tj9ic7pmmblmlubtb+/ft1+vRpTZs2bdiazy6Sunfv\nnk6ePKmqqqp0tZTQSHNv//nPf3T79m1J0r///W+9/fbbcb8lkE4j9ZgJY1lVVaU333xTkvTmm28O\ne4FO1Fi6GZ+qqiodP35ckuIuyJvoPvv6+qLXQVtbm4wxGRXsUmaMpRuZMpbGGG3ZskUlJSV68cUX\nh61JekxT9dfeRxUUFJgvfvGLprS01JSWlpqtW7caY4zp7e01oVAoWhcOh82iRYtMfn6+2bt3b7ra\nGdHvfvc7k5uba6ZNm2Z8Pp/59re/HdPnP/7xD+P3+43f7zeLFy8e9z7d9GjMxI/ljRs3zOrVq01h\nYaGprKw0//rXv2L6nMixHG583njjDfPGG29Ea7Zt22by8/PNsmXL4n57aiL7PHz4sFm8eLHx+/3m\na1/7mnn33XfHvceamhozf/58M3XqVJObm2t+8YtfZORYJuozE8bSGGP+8pe/GI/HY/x+fzQzw+Hw\nmMaURUwAYCEeswcAFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCw0P8CSWLIg2/s8awA\nAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x11225b090>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : 0.977611940299\nPercen within .1, confidence > .5 : 0.858208955224\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEACAYAAAB8nvebAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEJ9JREFUeJzt3X9olfXfx/HXpdv3azZnDnQuZwymaz/Us2PiKBz3EZ3m\naqIpXywLUeuPrLsMEsl/HJSiGITmH4L0Q+tGoojsxxqaeMpMWbRF3SiZ5mDqHKZtbTPRbZ/7D7/t\n/s79us7Zzs556/MBF5xd57PrvPh48eLys+vaPOecEwDAlGHxDgAAiBzlDQAGUd4AYBDlDQAGUd4A\nYBDlDQAG+S7vxsZGLV26VHl5ecrPz9fx48djmQsA0IckvwNffPFFlZaW6qOPPlJbW5taW1tjmQsA\n0AfPz0M6TU1NCgaD+u2334YiEwCgH76WTc6ePauxY8dq5cqVmj59up555hldvXo11tkAAL3wVd5t\nbW2qrq7WmjVrVF1drbvvvltbtmyJdTYAQG+cD/X19S4rK6vz6yNHjrhHHnmky5js7GwniY2NjY0t\ngi07O9tPDXfj68p7/Pjxmjhxok6dOiVJ+uqrr1RQUNBlzJkzZ+ScS/ht48aNcc9ATnKSk4x/b2fO\nnPFTw934vlXwzTff1PLlyxUIBPTTTz9pw4YNUX0gEEupqWnyPK/LlpqaFu9YwKDzfatgIBDQ999/\nH8sswIA1N/+hm/8b/c99XnzCADF0xz1hGQqF4h3BF3IOLnIOLgs5LWQcCF/3efs6kOdpkA4FRM3z\nPN165S1xbiJxRdudd9yVNwDcDihvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhv\nADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI\n8gYAgyhvADCI8gYAgyhvADAoKZLBWVlZSk1N1fDhw5WcnKyqqqpY5QIA9CGi8vY8T+FwWGlpabHK\nAwDwIeJlE+dcLHIAACIQUXl7nqe5c+dqxowZ2r17d6wyAQD6EdGyydGjR5WRkaFLly6ppKREubm5\nKi4ujlU2AEAvIirvjIwMSdLYsWO1ePFiVVVVdSnv8vLyztehUEihUGhQQgLA7SIcDiscDg/4OJ7z\nuYh99epVtbe3a9SoUWptbdW8efO0ceNGzZs37+aBPI/1cMSd53mSbj0POTeRuKLtTt9X3g0NDVq8\neLEkqa2tTcuXL+8sbgDA0PJ95d3vgbjyRgLgyhvWRNudPGEJAAZR3gBgEOUNAAZR3gBgEOUNAAZR\n3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBg\nEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOUNAAZR3gBgEOWNO0CSPM/rsqWmpsU7FDAgnnPO\nDcqBPE+DdCggap7nSbr1POx5H+crEkG03cmVNwAYFFF5t7e3KxgMqqysLFZ5AAA+RFTe27dvV35+\n/r//awoAiBff5X3u3DlVVFTo6aefZq0QAOLMd3m/9NJL2rZtm4YNY5kcAOItyc+gzz//XOPGjVMw\nGFQ4HO51XHl5eefrUCikUCg0wHgAcHsJh8N99qhfvm4V3LBhg9577z0lJSXp2rVr+vPPP7VkyRLt\n3bv3/w/ErYJIANwqCGui7c6I7/P++uuv9frrr+uzzz4blADAYKK8Yc2Q3ufN3SYAEF88YYnbClfe\nsIYnLAHgDkJ5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BB\nlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcAGER5A4BBlDcA\nGER5A4BBlDcAGER5A4BBvsv72rVrKioqUmFhofLz8/XKK6/EMhcAoA9JfgeOGDFChw8f1siRI9XW\n1qZZs2bp22+/1axZs2KZDwDQg4iWTUaOHClJun79utrb25WWlhaTUACAvkVU3h0dHSosLFR6erpm\nz56t/Pz8WOUCAPTB97KJJA0bNkw//vijmpqaNH/+fIXDYYVCoc73y8vLO1+HQqEu7wEApHA4rHA4\nPODjeM45F803vvrqq7rrrrv08ssv3zyQ5ynKQwGDxvM8Sbeehz3v43xFIoi2O30vm/z+++9qbGyU\nJP311186ePCggsFgxB8IABg438sm9fX1WrFihTo6OtTR0aGnnnpKc+bMiWU2oEeNjY165JF/qbX1\nepf9//zn8DglAoZe1Msm3Q7EsgmGyOnTpzVt2n/pr7/+p8v+u+/+b7W2/q9YNoEl0XZnRD+wBBLF\n8OF3SQp12ZeUNDouWYB44PF4ADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI\n8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYA\ngyhvADCI8gYAgyhvADCI8gYAgyhvADDId3nX1dVp9uzZKigo0JQpU7Rjx45Y5gIA9CHJ78Dk5GS9\n8cYbKiwsVEtLix544AGVlJQoLy8vlvkAAD3wfeU9fvx4FRYWSpJSUlKUl5enCxcuxCwYAKB3Ua15\n19bWqqamRkVFRYOdBwDgg+9lk7+1tLRo6dKl2r59u1JSUrq8V15e3vk6FAopFAoNNB8A3FbC4bDC\n4fCAj+M555zfwTdu3NCjjz6qBQsWaO3atV0P5HmK4FBA1E6fPq1g8GG1tJzusn/06Flqajoq6dbz\n0OtxH+crEkG03el72cQ5p9WrVys/P79bcQMAhpbv8j569Kjef/99HT58WMFgUMFgUJWVlbHMBgDo\nhe8171mzZqmjoyOWWQAAPvGEJQAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAY\nRHnjDpUkz/O6bampafEOBvgS8a+EBW4Pber+mwal5mZv6KMAUeDKGwAMorwBwCDKGwAMorwBwCDK\nGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAM\n8l3eq1atUnp6uqZOnRrLPAAAH3yX98qVK1VZWRnLLAAAn3yXd3FxscaMGRPLLAAAn1jzBgCDKG8A\nMChpMA9WXl7e+ToUCikUCg3m4QHAvHA4rHA4PODjeM4553dwbW2tysrK9PPPP3c/kOcpgkMBUTt9\n+rSCwYfV0nK6y/7Ro2epqemopFvPQ8/nvpv7OY8xlKLtTt/LJo8//rgeeughnTp1ShMnTtQ777wT\n8YcBAAaH72WTffv2xTIHACAC/MASAAyivAHAIMobAAyivAHAIMobAAyivAHAIMobAAyivAHAIMob\nAAyivAHAIMobAAyivAHAIMobAAyivAHAIMobAAyivAHAIMob6Edqapo8z+u2paamxTsa7mCD+geI\ngdtRc/Mf6unvXTY3e0MfBvg3rrwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMoryBLpK63c8diZ7u\nCed+cMQC93kDXbSp+z3d/gu8p3vCuR8cscCVNwAYRHkDgEG+y7uyslK5ubmaPHmytm7dGstMAIB+\n+Crv9vZ2Pf/886qsrNSJEye0b98+nTx5MtbZYiIcDsc7gi/kHGzheAfwxcp8WshpIeNA+Crvqqoq\nTZo0SVlZWUpOTtayZcu0f//+WGeLCSv/oOQcbOF4B/DFynxayGkh40D4Ku/z589r4sSJnV9nZmbq\n/PnzMQsFAOibr1sFI73XFYilYcOG6dq1C0pNLeuy/9q1E3FKBMSB8+HYsWNu/vz5nV9v3rzZbdmy\npcuY7Oxsp5s3uLKxsbGx+dyys7P91HA3nnPOqR9tbW26//77dejQId17772aOXOm9u3bp7y8vP6+\nFQAQA76WTZKSkrRz507Nnz9f7e3tWr16NcUNAHHk68obAJBYon7Cct26dcrLy1MgENBjjz2mpqam\nHsfF++GeDz/8UAUFBRo+fLiqq6t7HZeVlaVp06YpGAxq5syZQ5jwJr854z2fV65cUUlJiXJycjRv\n3jw1Njb2OC5e8+lnfl544QVNnjxZgUBANTU1Q5btb/1lDIfDGj16tILBoILBoF577bUhz7hq1Sql\np6dr6tSpvY6J9zxK/edMhLmUpLq6Os2ePVsFBQWaMmWKduzY0eO4iOY0qpVy59yBAwdce3u7c865\n9evXu/Xr13cb09bW5rKzs93Zs2fd9evXXSAQcCdOnIj2I6Ny8uRJ98svv7hQKOR++OGHXsdlZWW5\ny5cvD2GyrvzkTIT5XLdundu6datzzrktW7b0+O/uXHzm08/8fPHFF27BggXOOeeOHz/uioqKEi7j\n4cOHXVlZ2ZDmutU333zjqqur3ZQpU3p8P97z+Lf+cibCXDrnXH19vaupqXHOOdfc3OxycnIGfG5G\nfeVdUlKiYcNufntRUZHOnTvXbUwiPNyTm5urnJwcX2NdHFeQ/ORMhPn89NNPtWLFCknSihUr9Mkn\nn/Q6dqjn08/8/Gf+oqIiNTY2qqGhIaEySvE9FyWpuLhYY8aM6fX9eM/j3/rLKcV/LiVp/PjxKiws\nlCSlpKQoLy9PFy5c6DIm0jkdlF9M9fbbb6u0tLTbfksP93iep7lz52rGjBnavXt3vOP0KBHms6Gh\nQenp6ZKk9PT0Xk+ueMynn/npaUxPFx7xzOh5nr777jsFAgGVlpbqxInEu3893vPoVyLOZW1trWpq\nalRUVNRlf6Rz2ufdJiUlJbp48WK3/Zs3b1ZZ2c0HJDZt2qR//OMfeuKJJ7qNG6qHe/zk7M/Ro0eV\nkZGhS5cuqaSkRLm5uSouLk6onPGez02bNnXL01umoZjPW/mdn1uvxIbyITQ/nzV9+nTV1dVp5MiR\n+vLLL7Vo0SKdOnVqCNJFJp7z6FeizWVLS4uWLl2q7du3KyUlpdv7kcxpn+V98ODBPoO8++67qqio\n0KFDh3p8f8KECaqrq+v8uq6uTpmZmX0eMxr95fQjIyNDkjR27FgtXrxYVVVVg142A82ZCPOZnp6u\nixcvavz48aqvr9e4ceN6HDcU83krP/Nz65hz585pwoQJMc0VacZRo0Z1vl6wYIHWrFmjK1euKC0t\ncf4iT7zn0a9EmssbN25oyZIlevLJJ7Vo0aJu70c6p1Evm1RWVmrbtm3av3+/RowY0eOYGTNm6Ndf\nf1Vtba2uX7+uDz74QAsXLoz2Iwest7Wvq1evqrm5WZLU2tqqAwcO9PlT9ljrLWcizOfChQu1Z88e\nSdKePXt6PAnjNZ9+5mfhwoXau3evJOn48eO65557OpeBhoKfjA0NDZ3nQFVVlZxzCVXcUvzn0a9E\nmUvnnFavXq38/HytXbu2xzERz2m0Pz2dNGmSu++++1xhYaErLCx0zz77rHPOufPnz7vS0tLOcRUV\nFS4nJ8dlZ2e7zZs3R/txUfv4449dZmamGzFihEtPT3cPP/xwt5xnzpxxgUDABQIBV1BQkLA5nYv/\nfF6+fNnNmTPHTZ482ZWUlLg//vijW854zmdP87Nr1y63a9euzjHPPfecy87OdtOmTevzDqR4Zdy5\nc6crKChwgUDAPfjgg+7YsWNDnnHZsmUuIyPDJScnu8zMTPfWW28l3Dz6yZkIc+mcc0eOHHGe57lA\nINDZmRUVFQOaUx7SAQCD+DNoAGAQ5Q0ABlHeAGAQ5Q0ABlHeAGAQ5Q0ABlHeAGAQ5Q0ABv0fc6Zr\nLBcQDjUAAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x1121dbb10>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "textOuput2\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.940886699507\nPercen within .1, all : 0.788177339901\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEACAYAAAB8nvebAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEK5JREFUeJzt3X9oleX/x/HXPbdQmysXui1nDI6u/VDPZuIoXBzROV1N\nNP3DshhqwSeLMkik/nFQmmJ8Q/MPQcq0P6RPEdqPNTTxLjVl0RYESoY5mLoN02Y6k7l5ff/w277t\n933O2dl9ru35gBvOzrl2nTdvb19cXLvvcxxjjBEAwCoJfhcAAAgf4Q0AFiK8AcBChDcAWIjwBgAL\nEd4AYCHP4d3S0qLly5crNzdXeXl5OnXqVCzrAgD0I9HrwFdffVVlZWX67LPP1N7ertbW1ljWBQDo\nh+PlJp1r166psLBQv//++1DUBAAYgKdtk/Pnz2vChAlatWqVZs6cqRdeeEE3b96MdW0AgD54Cu/2\n9nbV1tZq7dq1qq2t1b333qstW7bEujYAQF+MB42NjSYrK6vz52PHjpknnniiy5hAIGAkcXBwcHCE\ncQQCAS8x3IOnlXd6eromT56ss2fPSpK+/fZb5efndxlz7tw5GWPi/ti4caPvNVAndVInNf5znDt3\nzksM9+D5apP3339fK1euVFtbmwKBgPbs2RPRGwIAouc5vIPBoH788cdY1gIA8GjE3WEZCoX8LsET\n6hxc1Dm4bKjThhqj4ek6b08TOY4GaSoAGDEizc4Rt/IGgOGA8AYACxHeAGAhwhsALER4A4CFCG8A\nsBDhjWEtJSVVjuN0OVJSUv0uC4ga13ljWHMcR3c//6fLs5yriBtc5w0AIwjhDQAWIrwBwEKENwBY\niPAGAAsR3gBgIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgDgIUI\nbwCwEOENABZKDGdwVlaWUlJSNGrUKCUlJammpiZWdQEA+hFWeDuOI9d1lZrKF7gCgJ/C3jbhi1sB\nwH9hhbfjOJo/f75mzZql3bt3x6omAMAAwto2OXHihDIyMnT58mWVlJQoJydHxcXFsaoNANCHsMI7\nIyNDkjRhwgQtXbpUNTU1XcK7srKy83EoFFIoFBqUIgFguHBdV67rRj2PYzxuYt+8eVMdHR0aN26c\nWltbtWDBAm3cuFELFiy4O5HjsB+OuOM4jqTu5yXnKuJHpNnpeeXd3NyspUuXSpLa29u1cuXKzuAG\nAAwtzyvvASdi5Y04xMob8S7S7OQOSwCwEOENABYivDFspKSkynGcLgcwXLHnjWGjr/1t9rwRz9jz\nBoARhPAGAAsR3gBgIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgD\ngIUIbwCwEOENABYivAHAQoQ3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBY\nKKzw7ujoUGFhocrLy2NVDwDAg7DCe/v27crLy5PjOLGqBwDggefwvnDhgqqqqvT888/LGBPLmgAA\nA/Ac3q+99pq2bdumhAS2yQHAb4leBn311VeaOHGiCgsL5bpun+MqKys7H4dCIYVCoSjLA4DhxXXd\nfnPUK8d42AN588039fHHHysxMVG3bt3SX3/9pWXLlmnfvn3/P5HjsJ0CX939W0z3c7D35zhXES8i\nzU5P4f1v3333nd599119+eWXg1IAMFgIb9go0uyMaAObq00AwF9hr7z7nIiVN3zGyhs2GtKVNwDA\nX4Q3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAsR3gBgIcIbACxE\neAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgDgIUIbwCwEOENABYivAHAQoQ3\nAFiI8AYACxHeAGAhz+F969YtFRUVqaCgQHl5eXrjjTdiWRcAoB+JXgeOHj1aR48e1dixY9Xe3q45\nc+bo+PHjmjNnTizrAwD0Iqxtk7Fjx0qS2tra1NHRodTU1JgUBQDoX1jhfefOHRUUFCgtLU1z585V\nXl5erOoCAPTD87aJJCUkJOjnn3/WtWvXVFpaKtd1FQqFOl+vrKzsfBwKhbq8BgCQXNeV67pRz+MY\nY0wkv/jWW29pzJgxev311+9O5DiKcCpgUDiOI6n7Odj7c5yriBeRZqfnbZM//vhDLS0tkqS///5b\nhw8fVmFhYdhvCACInudtk8bGRlVUVOjOnTu6c+eOnnvuOc2bNy+WtQEA+hDxtkmPidg2gc/YNoGN\nYr5tAgCIH4Q3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAsR3gBg\nIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgDgIUIbwCwEOENABYi\nvAHAQoQ3AFiI8AYACxHeAGAhz+Hd0NCguXPnKj8/X9OmTdOOHTtiWRcAoB+OMcZ4GdjU1KSmpiYV\nFBToxo0beuSRR3TgwAHl5ubenchx5HEqICYcx5HU/Rzs/TnOVcSLSLPT88o7PT1dBQUFkqTk5GTl\n5ubq0qVLYb8hACB6Ee1519fXq66uTkVFRYNdDwDAg8Rwf+HGjRtavny5tm/fruTk5C6vVVZWdj4O\nhUIKhULR1gcAw4rrunJdN+p5PO95S9Lt27f15JNPatGiRVq3bl3Xidjzhs/Y84aNIs1Oz+FtjFFF\nRYUeeOABvffee4NWADBYvId3kqT2Ls+MGzdef/11NXbFAX2IeXgfP35cjz/+uGbMmPF//0mkd955\nRwsXLoyqAGCwhLPyZjWOeBHz8I5VAcBgIbxho5hfKggAiB+ENwBYiPAGAAsR3gBgIcIbACxEeAOA\nhQhvALAQ4Q0rpaSkynGcLgcwknCTDqwU7Q053KSDeMFNOgAwghDeAGAhwhsALER4A4CFCG8AsBDh\nDQAWIrwBwEKENwBYiPAGAAsR3gBgIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4A\nYCHCGwAs5Dm8V69erbS0NE2fPj2W9QAAPPAc3qtWrVJ1dXUsawEAeOQ5vIuLizV+/PhY1gIA8Ig9\nbwCwEOENABZKHMzJKisrOx+HQiGFQqHBnB4ArOe6rlzXjXoexxhjvA6ur69XeXm5fvnll54TOY7C\nmAqIiuM4krqfb9E9x/kLP0SanZ63TZ5++mk99thjOnv2rCZPnqw9e/aE/WYAgMER1sq734lYeWMI\nsfLGcBHzlTcAIH4Q3gBgIcIbACxEeAOAhQhvQJKUKMdxuhwpKal+FwX0iatNYKVYXG3CFSjwA1eb\nAMAIQngDgIUIb1ghJSW1y340MNKx5w0r9NzjZs8bwwN73gAwghDeQJ+4fBDxa1A/zxsYXtrVfSvl\n+nX22xEfWHkDgIUIbwCwEOENABYivAHAQoQ3EBauQEF84GoTICxcgYL4wMobACxEeAOAhQhvALAQ\n4Q0AFiK8AcBChDcAWIhLBeGbvj7DmC9bAAbGyhu++c9/XlVCQkKXY9SoRCUn39/jRpj4lshNOxhy\nhDd809z8p6R9unvTy90jJaVIra3XujzX8xtu4s0/N+7cPa5f/9PnejASeA7v6upq5eTkaOrUqdq6\ndWssawIADMBTeHd0dOjll19WdXW1Tp8+rf379+vMmTOxri0mXNf1uwRPqHOwuX4X4Ikt/bShThtq\njIan8K6pqdGUKVOUlZWlpKQkrVixQgcPHox1bTFhyz8odQ421+8CPCktXWTFB1/Z8O9uQ43R8BTe\nFy9e1OTJkzt/zszM1MWLF2NWFDBStbXdUvf9fvbQ0RtPlwrG/1/7YaOkpASNGfM/Skr6b+dzt27Z\nuR0HDDnjwcmTJ01paWnnz5s3bzZbtmzpMiYQCHS/PICDg4ODY4AjEAh4ieEeHNPXnRL/0t7erocf\nflhHjhzRgw8+qNmzZ2v//v3Kzc0d6FcBADHgadskMTFRO3fuVGlpqTo6OrRmzRqCGwB85GnlDQCI\nLxHfYbl+/Xrl5uYqGAzqqaee0rVr13od5/fNPZ9++qny8/M1atQo1dbW9jkuKytLM2bMUGFhoWbP\nnj2EFd7ltU6/+3n16lWVlJQoOztbCxYsUEtLS6/j/Oqnl/688sormjp1qoLBoOrq6oastn8MVKPr\nurrvvvtUWFiowsJCvf3220Ne4+rVq5WWlqbp06f3OcbvPkoD1xkPvZSkhoYGzZ07V/n5+Zo2bZp2\n7NjR67iwehrRTrkx5tChQ6ajo8MYY8yGDRvMhg0beoxpb283gUDAnD9/3rS1tZlgMGhOnz4d6VtG\n5MyZM+bXX381oVDI/PTTT32Oy8rKMleuXBnCyrryUmc89HP9+vVm69atxhhjtmzZ0uu/uzH+9NNL\nf77++muzaNEiY4wxp06dMkVFRXFX49GjR015efmQ1tXd999/b2pra820adN6fd3vPv5joDrjoZfG\nGNPY2Gjq6uqMMcZcv37dZGdnR31uRrzyLikpUULC3V8vKirShQsXeoyJh5t7cnJylJ2d7Wms8XEH\nyUud8dDPL774QhUVFZKkiooKHThwoM+xQ91PL/35d/1FRUVqaWlRc3NzXNUo+XsuSlJxcbHGjx/f\n5+t+9/EfA9Up+d9LSUpPT1dBQYEkKTk5Wbm5ubp06VKXMeH2dFA+mOrDDz9UWVlZj+dturnHcRzN\nnz9fs2bN0u7du/0up1fx0M/m5malpaVJktLS0vo8ufzop5f+9Damt4WHnzU6jqMffvhBwWBQZWVl\nOn369JDV55XfffQqHntZX1+vuro6FRUVdXk+3J72e7VJSUmJmpqaejy/efNmlZeXS5I2bdqke+65\nR88880yPcUN1c4+XOgdy4sQJZWRk6PLlyyopKVFOTo6Ki4vjqk6/+7lp06Ye9fRV01D0szuv/em+\nEhvKm9C8vNfMmTPV0NCgsWPH6ptvvtGSJUt09uzZIaguPH720at46+WNGze0fPlybd++XcnJyT1e\nD6en/Yb34cOH+y3ko48+UlVVlY4cOdLr65MmTVJDQ0Pnzw0NDcrMzOx3zkgMVKcXGRkZkqQJEyZo\n6dKlqqmpGfSwibbOeOhnWlqampqalJ6ersbGRk2cOLHXcUPRz+689Kf7mAsXLmjSpEkxrSvcGseN\nG9f5eNGiRVq7dq2uXr2q1NT4+YwTv/voVTz18vbt21q2bJmeffZZLVmypMfr4fY04m2T6upqbdu2\nTQcPHtTo0aN7HTNr1iz99ttvqq+vV1tbmz755BMtXrw40reMWl97Xzdv3tT169clSa2trTp06FC/\nf2WPtb7qjId+Ll68WHv37pUk7d27t9eT0K9+eunP4sWLtW/fPknSqVOndP/993duAw0FLzU2Nzd3\nngM1NTUyxsRVcEv+99GreOmlMUZr1qxRXl6e1q1b1+uYsHsa6V9Pp0yZYh566CFTUFBgCgoKzIsv\nvmiMMebixYumrKysc1xVVZXJzs42gUDAbN68OdK3i9jnn39uMjMzzejRo01aWppZuHBhjzrPnTtn\ngsGgCQaDJj8/P27rNMb/fl65csXMmzfPTJ061ZSUlJg///yzR51+9rO3/uzatcvs2rWrc8xLL71k\nAoGAmTFjRr9XIPlV486dO01+fr4JBoPm0UcfNSdPnhzyGlesWGEyMjJMUlKSyczMNB988EHc9dFL\nnfHQS2OMOXbsmHEcxwSDwc7MrKqqiqqn3KQDABbia9AAwEKENwBYiPAGAAsR3gBgIcIbACxEeAOA\nhQhvALAQ4Q0AFvpfh4fmxwC2Z5YAAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x113625050>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : 0.971014492754\nPercen within .1, confidence > .5 : 0.855072463768\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEACAYAAAB8nvebAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEUVJREFUeJzt3WlsVGX7x/HfgWIQS5EaaGtb02SgdgGmA0iDoWYIlKWx\nhC15ADUNiy9cohglRN9YF7AEEwPhBQmPIvoCjcaAYmlYwhFB+DeRakyKoEiTsrRhsVhAUtre/xc8\nFku3M9NOZ274fpKTDDN377lycfzleHUO4xhjjAAAVhkQ7QIAAKEjvAHAQoQ3AFiI8AYACxHeAGAh\nwhsALOQ5vE+cOKFAINB2DBs2TBs3boxkbQCALjjhfM67tbVVqampqqysVHp6eiTqAgB0I6yxyb59\n++Tz+QhuAIiSsML7s88+05IlS/q6FgCARyGPTZqampSamqrq6mqNGDEiUnUBALoRF+oP7N69WxMm\nTOgQ3KNGjdKpU6f6rDAAuBf4fD79/vvvIf9cyGOT7du3a/HixR2eP3XqlIwxMX+8+eabUa+BOiN7\nDB06vMP5ed99g6Nel639tLVOG2o0xoR90RtSeF+7dk379u3T/Pnzw3ozoD80Nv4pybQ7mppuRLco\noI+FNDZ54IEHdPHixUjVAgDw6J67wzIYDEa7BE+o895kSz9tqNOGGnsjrJt0Ot3IcdRHWwG94jiO\nbo1L2j3L+YmYFG523nNX3gBwNyC8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgDgIUIbwCwEOENABYi\nvAHAQoQ3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAsR3gBgIc/h\n3dDQoIULFyo7O1s5OTk6evRoJOsCAHQjzuvCl19+WUVFRfryyy/V3Nysa9euRbIuAEA3HGOM6WnR\nlStXFAgE9Mcff3S9kePIw1ZAxDmOI+nOc5HzE7Ep3Oz0NDY5ffq0RowYoaVLl2r8+PF69tlndf36\n9ZDfDADQNzyNTZqbm3Xs2DFt2rRJjz32mFauXKmysjK9/fbb7daVlpa2PQ4GgwoGg31ZKwBYz3Vd\nua7b6308jU3q6uo0efJknT59WpJ06NAhlZWVadeuXbc3YmyCGMHYBDaJ6NgkOTlZ6enpOnnypCRp\n3759ys3NDfnNAAB9w9OVtyT9/PPPWrFihZqamuTz+bR161YNGzbs9kZceSNGcOUNm4SbnZ7DO1IF\nAH2N8IZNIjo2AQDEFsIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgD\ngIUIbwCwEOENABYivAHAQoQ3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBY\nKC6UxRkZGUpISNDAgQM1aNAgVVZWRqouAEA3Qgpvx3Hkuq4SExMjVQ8AwIOQxybGmEjUAQAIQUjh\n7TiOpk+frokTJ2rLli2RqgkA0IOQxiaHDx9WSkqKLly4oMLCQmVlZamgoKDt9dLS0rbHwWBQwWCw\nr+oEgLuC67pyXbfX+zgmzDnIW2+9pfj4eL366qu3NnIcRiqICY7jSLrzXOT8RGwKNzs9j02uX7+u\nxsZGSdK1a9e0Z88ejR07NuQ3BAD0nuexSX19vebNmydJam5u1lNPPaUZM2ZErDAAQNfCHpt02Iix\nCWIEYxPYJOJjEwBA7CC8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgDgIUIbwCwEOENABYivAHAQoQ3\nAFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAsR3gBgIcIbACxEeAOA\nhUIK75aWFgUCARUXF0eqHgCAByGF94YNG5STkyPHcSJVDwDAA8/hfebMGZWXl2vFihUyxkSyJgBA\nDzyH9yuvvKL169drwADG5AAQbXFeFu3atUsjR45UIBCQ67pdristLW17HAwGFQwGe1keANxdXNft\nNke9coyHGcgbb7yhTz/9VHFxcbpx44b++usvLViwQJ988sntjRyHcQpiwq3fydx5LnJ+IjaFm52e\nwvvfvvvuO73//vv65ptv+qQAoK8R3rBJuNkZ1gCbT5sAQHSFfOXd5UZceSNGcOUNm/TrlTcAILoI\nb9wj4uQ4TrsjISEx2kUBYWNsgrtOV2MTRimIRYxNAOAeQngDgIUIbwCwEOENABYivAHAQoQ3AFiI\n8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAsR3gBgIcIbACxEeAOAhQhv\nALAQ4Q0AFvIc3jdu3FB+fr7y8vKUk5Oj119/PZJ1AQC6Eed14eDBg3XgwAENGTJEzc3NmjJlig4d\nOqQpU6ZEsj4AQCdCGpsMGTJEktTU1KSWlhYlJiZGpCgAQPdCCu/W1lbl5eUpKSlJU6dOVU5OTqTq\nAgB0w/PYRJIGDBign376SVeuXNHMmTPluq6CwWDb66WlpW2Pg8Fgu9cAAJLrunJdt9f7OMYYE84P\nvvPOO7r//vv12muv3drIcRTmVkCfchxH0p3nYufPcc4i2sLNTs9jk4sXL6qhoUGS9Pfff2vv3r0K\nBAIhvyEAoPc8j03Onz+vkpIStba2qrW1Vc8884ymTZsWydoAAF0Ie2zSYSPGJogRjE1gk4iPTQAA\nsYPwBgALEd6wVkJCohzH6XAA9wJm3rBW57Ntqav5NjNvxCJm3gBwDyG8AcBChDcAWIjwBgALEd4A\nYCHCGwAsRHgDgIUIbwCwEOENABYivAHAQoQ3AFiI8AYACxHeAGAhwhsALER4A4CFCG8AsBDhDQAW\nIrwBwEKENwBYyHN419bWaurUqcrNzdWYMWO0cePGSNYFAOiG5y8grqurU11dnfLy8nT16lVNmDBB\nO3bsUHZ29q2N+AJi9DO+gBh3g4h/AXFycrLy8vIkSfHx8crOzta5c+dCfkMAQO+FNfOuqalRVVWV\n8vPz+7oeAIAHcaH+wNWrV7Vw4UJt2LBB8fHx7V4rLS1texwMBhUMBntbHwDcVVzXleu6vd7H88xb\nkm7evKknn3xSs2fP1sqVK9tvxMwb/YyZN+4G4Wan5/A2xqikpEQPPfSQPvjggz4rAAgX4Y27QcTD\n+9ChQ3riiSc0bty4//1HI7333nuaNWtWrwoAwkV4424Q8fCOVAFAuAhv3A0i/lFBAEDsILwBwEKE\nNwBYiPAGAAsR3gBgIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4AYCHCGwAsRHgD\ngIUIbwCwEOENABYivAHAQoQ3AFiI8AYACxHeAGAhwhsALER4A4CFPIf3smXLlJSUpLFjx0ayHgCA\nB57De+nSpaqoqIhkLQAAjzyHd0FBgYYPHx7JWgAAHjHzBgALxfXlZqWlpW2Pg8GggsFgX24PANZz\nXVeu6/Z6H8cYY7wurqmpUXFxsX755ZeOGzmOQtgK6DXHcSR1ds519nznz3HOItrCzU7GJgBgIc/h\nvXjxYj3++OM6efKk0tPTtXXr1kjWBQDoRkhjk243YmyCfsbYBHeDcLOzT39hCUTCr7/+qo0bN4uc\nBW4jvBHzDh48qP/+9/908+Z//vVsXR/sHPe/q/fbhg4drr/+utwHewORRXjDCnFxY3Xz5sp/PVMt\naV0vd23WnaOUxkan86VAjOHTJgBgIcIbACxEeAOAhQhvALAQ4Q0AFiK8AcBChDcAWIjwBgALEd4A\nYCHCG/AgISFRjuO0OxISEqNdFu5h3B4PeNDY+Ke4lR6xhCtvALAQ4Q0AFiK8AcBChDcAWIjwBgAL\n8WkToJ2O364DxCLCG2in47fr3EKgI7YwNgEAC3kO74qKCmVlZWn06NFat6633x0IAOgNT+Hd0tKi\nF198URUVFaqurtb27dt1/PjxSNcWEa7rRrsET6jTBnF9fsu8Lf20oU4bauwNT+FdWVmpUaNGKSMj\nQ4MGDdKiRYu0c+fOSNcWEbb8hVKnDf6Zj98+bt1GHz5b+mlDnTbU2Buewvvs2bNKT09v+3NaWprO\nnj0bsaIAAN3z9GkTPjqFaBowYICMqVBCQnHbc62tjbp6NYpFAdFmPDhy5IiZOXNm25/Xrl1rysrK\n2q3x+Xzt//+Rg4ODg6PHw+fzeYnhDhxjjFEPmpub9eijj2r//v16+OGHNWnSJG3fvl3Z2dk9/SgA\nIAI8jU3i4uK0adMmzZw5Uy0tLVq+fDnBDQBR5OnKGwAQW8K+w3LVqlXKzs6W3+/X/PnzdeXKlU7X\nRfvmni+++EK5ubkaOHCgjh071uW6jIwMjRs3ToFAQJMmTerHCm/xWme0+3n58mUVFhYqMzNTM2bM\nUENDQ6frotVPL/156aWXNHr0aPn9flVVVfVbbf/oqUbXdTVs2DAFAgEFAgG9++67/V7jsmXLlJSU\npLFjx3a5Jtp9lHquMxZ6KUm1tbWaOnWqcnNzNWbMGG3cuLHTdSH1NKxJuTFmz549pqWlxRhjzOrV\nq83q1as7rGlubjY+n8+cPn3aNDU1Gb/fb6qrq8N9y7AcP37cnDhxwgSDQfPjjz92uS4jI8NcunSp\nHytrz0udsdDPVatWmXXr1hljjCkrK+v0792Y6PTTS3++/fZbM3v2bGOMMUePHjX5+fkxV+OBAwdM\ncXFxv9Z1p4MHD5pjx46ZMWPGdPp6tPv4j57qjIVeGmPM+fPnTVVVlTHGmMbGRpOZmdnrczPsK+/C\nwkINGHDrx/Pz83XmzJkOa2Lh5p6srCxlZmZ6WmuiOEHyUmcs9PPrr79WSUmJJKmkpEQ7duzocm1/\n99NLf/5df35+vhoaGlRfXx9TNUrRPRclqaCgQMOHD+/y9Wj38R891SlFv5eSlJycrLy8PElSfHy8\nsrOzde7cuXZrQu1pn/zDVB999JGKioo6PG/TzT2O42j69OmaOHGitmzZEu1yOhUL/ayvr1dSUpIk\nKSkpqcuTKxr99NKfztZ0duERzRodx9EPP/wgv9+voqIiVVdX91t9XkW7j17FYi9rampUVVWl/Pz8\nds+H2tNuP21SWFiourq6Ds+vXbtWxcW3bphYs2aN7rvvPi1ZsqTDuv66ucdLnT05fPiwUlJSdOHC\nBRUWFiorK0sFBQUxVWe0+7lmzZoO9XRVU3/0805e+3PnlVh/3oTm5b3Gjx+v2tpaDRkyRLt379bc\nuXN18uTJfqguNNHso1ex1surV69q4cKF2rBhg+Lj4zu8HkpPuw3vvXv3dlvIxx9/rPLycu3fv7/T\n11NTU1VbW9v259raWqWlpXW7Zzh6qtOLlJQUSdKIESM0b948VVZW9nnY9LbOWOhnUlKS6urqlJyc\nrPPnz2vkyJGdruuPft7JS3/uXHPmzBmlpqZGtK5Qaxw6dGjb49mzZ+v555/X5cuXlZjYu3/0qi9F\nu49exVIvb968qQULFujpp5/W3LlzO7weak/DHptUVFRo/fr12rlzpwYPHtzpmokTJ+q3335TTU2N\nmpqa9Pnnn2vOnDnhvmWvdTX7un79uhobGyVJ165d0549e7r9LXukdVVnLPRzzpw52rZtmyRp27Zt\nnZ6E0eqnl/7MmTNHn3zyiSTp6NGjevDBB9vGQP3BS4319fVt50BlZaWMMTEV3FL0++hVrPTSGKPl\ny5crJydHK1eu7HRNyD0N97eno0aNMo888ojJy8szeXl55rnnnjPGGHP27FlTVFTUtq68vNxkZmYa\nn89n1q5dG+7bhe2rr74yaWlpZvDgwSYpKcnMmjWrQ52nTp0yfr/f+P1+k5ubG7N1GhP9fl66dMlM\nmzbNjB492hQWFpo///yzQ53R7Gdn/dm8ebPZvHlz25oXXnjB+Hw+M27cuG4/gRStGjdt2mRyc3ON\n3+83kydPNkeOHOn3GhctWmRSUlLMoEGDTFpamvnwww9jro9e6oyFXhpjzPfff28cxzF+v78tM8vL\ny3vVU27SAQAL8TVoAGAhwhsALER4A4CFCG8AsBDhDQAWIrwBwEKENwBYiPAGAAv9P1oUYVC/1YHk\nAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x1121a4990>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "textOuput3\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.92118226601\nPercen within .1, all : 0.738916256158\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGAVJREFUeJzt3X9MVff9x/HXdbDolYrSTXTApgEc4I/LpW5kiY7rOuYk\nk7Bp9rWLllSbUKo1bdLGuD++w5SyGvON0ZhYXVZXt0TMzFJJdyV1i8fNUiSxdN8lNBOWkl5QydRi\ndatfFT7fP5x3xQv3ngv38uPT5yM5yb2cd8955+PJK6efe8/9eIwxRgAAq0yb6AYAAIlHuAOAhQh3\nALAQ4Q4AFiLcAcBChDsAWMhVuA8MDMjv92vt2rUR+xzHUXp6uvx+v/x+v+rr6xPeJAAgPiluivbt\n26eioiLdvHlz2P1lZWVqampKaGMAgNGLeefe09OjYDCop59+WiM978RzUAAwucQM9xdeeEF79uzR\ntGnDl3o8HrW0tMjn86miokIdHR0JbxIAEJ+o4f7WW29p7ty58vv9I96dl5SUKBQK6S9/+Yuee+45\nVVVVJaVRAEAcTBQ7d+402dnZZsGCBWbevHnG6/WaTZs2RftPzIIFC8y1a9ci/p6bm2sksbGxsbHF\nseXm5kbN3JFEDffPchzH/OAHP4j4+5UrV8zg4KAxxpjz58+br33ta8OfSK5PNaF+9rOfTXQLrtBn\n4kyFHo2hz0SbKn2ONjtdfVvmAY/HI0k6dOiQJKmmpkYnTpzQwYMHlZKSIq/Xq8bGxngOCQBIAtfh\nXlZWprKyMkn3Q/2BrVu3auvWrYnvDAAwajyh+pBAIDDRLbhCn4kzFXqU6DPRpkqfo+X595xO8k/k\n8fB9eACI02izkzt3ALAQ4Q4AFiLcAcBChDsAWIhwh9VmzcqQx+OJuc2alTHRrQIJxbdlYLX7D965\nue64PjE58W0ZAEAY4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIVchfvAwID8fr/Wrl07\n7P7t27crPz9fPp9P7e3tCW0QABA/V+G+b98+FRUVhZfZ+6xgMKiuri51dnbq8OHDqq2tTXiTAID4\nxAz3np4eBYNBPf3008M+AtvU1KTq6mpJUmlpqfr7+9XX15f4TgEArsUM9xdeeEF79uzRtGnDl/b2\n9ionJyf8Pjs7Wz09PYnrEAAQt6gLZL/11luaO3eu/H6/HMcZse7hO/rhpm8kqa6uLvw6EAhYv4Yh\nAMTLcZyoeetW1F+F/OlPf6pf//rXSklJ0e3bt/XJJ59o3bp1Onr0aLjmmWeeUSAQ0IYNGyRJBQUF\nOnv2rDIzM4eeiF+FxATgVyEx1SXlVyEbGhoUCoX04YcfqrGxUd/5zneGBLskVVZWhv/W2tqq2bNn\nRwQ7AGB8RZ2WediD6ZZDhw5JkmpqalRRUaFgMKi8vDzNnDlTR44cSXyXAIC4sFgHrMa0DKY6FusA\nAIQR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCw\nEOEOABYi3AHAQoQ7AFgoZrjfvn1bpaWlKi4uVlFRkXbu3BlR4ziO0tPT5ff75ff7VV9fn5RmAQDu\nxFxmb/r06Tpz5oy8Xq/u3bunFStW6Ny5c1qxYsWQurKyMjU1NSWtUQCAe66mZbxeryTpzp07GhgY\nUEZGRkQNS5QBwOThKtwHBwdVXFyszMxMrVq1SkVFRUP2ezwetbS0yOfzqaKiQh0dHUlpFgDgTsxp\nGUmaNm2a3n//fd24cUOrV6+W4zgKBALh/SUlJQqFQvJ6vTp16pSqqqp08eLFiOPU1dWFXwcCgSHH\nAADc/wzTcZwxH8dj4pxPefnllzVjxgy9+OKLI9YsXLhQFy5cGDJ9M9oVvIGx8Hg8ktxcd1yfmJxG\nm50xp2WuXr2q/v5+SdKnn36q06dPy+/3D6np6+sLn7ytrU3GmGHn5QEA4yPmtMzly5dVXV2twcFB\nDQ4OatOmTXr88cd16NAhSVJNTY1OnDihgwcPKiUlRV6vV42NjUlvHAAwsrinZUZ9IqZlMAGYlsFU\nl7RpGQDA1EO4A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4A\nFiLcAcBChDsAWIhwBwALEe4AYKGo4X779m2VlpaquLhYRUVF2rlz57B127dvV35+vnw+n9rb25PS\nKADAvajL7E2fPl1nzpyR1+vVvXv3tGLFCp07d04rVqwI1wSDQXV1damzs1Pnz59XbW2tWltbk944\nAGBkMadlvF6vJOnOnTsaGBiIWPi6qalJ1dXVkqTS0lL19/err68vCa0CANyKGe6Dg4MqLi5WZmam\nVq1apaKioiH7e3t7lZOTE36fnZ2tnp6exHcKAHAt6rSMJE2bNk3vv/++bty4odWrV8txHAUCgSE1\nDy/een9R4kh1dXXh14FAIOI4APB55ziOHMcZ83E8Jo5ltV9++WXNmDFDL774YvhvzzzzjAKBgDZs\n2CBJKigo0NmzZ5WZmTn0RKNcwRsYi/s3Gm6uO65PTE6jzc6o0zJXr15Vf3+/JOnTTz/V6dOn5ff7\nh9RUVlbq6NGjkqTW1lbNnj07ItgBAOMr6rTM5cuXVV1drcHBQQ0ODmrTpk16/PHHdejQIUlSTU2N\nKioqFAwGlZeXp5kzZ+rIkSPj0jgAYGRxTcuM6URMy2ACMC2DqS4p0zIAgKmJcAcACxHuAGAhwh0A\nLES4A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFooZ7qFQ\nSKtWrdLixYu1ZMkS7d+/P6LGcRylp6fL7/fL7/ervr4+Kc0CANyJuUB2amqq9u7dq+LiYt26dUuP\nPfaYysvLVVhYOKSurKxMTU1NSWsUAOBezDv3efPmqbi4WJKUlpamwsJCXbp0KaKOVWwAYPKIa869\nu7tb7e3tKi0tHfJ3j8ejlpYW+Xw+VVRUqKOjI6FNAgDiE3Na5oFbt25p/fr12rdvn9LS0obsKykp\nUSgUktfr1alTp1RVVaWLFy8mvFkAgDuuwv3u3btat26dNm7cqKqqqoj9jzzySPj1mjVr9Oyzz+r6\n9evKyMgYUldXVxd+HQgEFAgERtc1AFjKcRw5jjPm43hMjMlyY4yqq6v16KOPau/evcPW9PX1ae7c\nufJ4PGpra9OPf/xjdXd3Dz3RKFfwBsbC4/FIcnPdcX1ichptdsa8c3/nnXf0m9/8RsuWLZPf75ck\nNTQ06KOPPpIk1dTU6MSJEzp48KBSUlLk9XrV2NgYdyMAgMSJeeeesBNx544JwJ07prrRZidPqAKA\nhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHAQoQ7AFiI\ncAcACxHuAGAhwh0ALBQz3EOhkFatWqXFixdryZIl2r9//7B127dvV35+vnw+n9rb2xPeKADAvZjL\n7KWmpmrv3r0qLi7WrVu39Nhjj6m8vFyFhYXhmmAwqK6uLnV2dur8+fOqra1Va2trUhsHAIws5p37\nvHnzVFxcLElKS0tTYWGhLl26NKSmqalJ1dXVkqTS0lL19/err68vCe0CANyIa869u7tb7e3tKi0t\nHfL33t5e5eTkhN9nZ2erp6cnMR0CAOLmOtxv3bql9evXa9++fUpLS4vY//ACrvcXJgYATISYc+6S\ndPfuXa1bt04bN25UVVVVxP6srCyFQqHw+56eHmVlZUXU1dXVhV8HAgEFAoH4OwYAizmOI8dxxnwc\nj3n4lvshxhhVV1fr0Ucf1d69e4etCQaDOnDggILBoFpbW/X8889HfKDq8Xgi7u6BZLv/f5Burjuu\nT0xOo83OmOF+7tw5ffvb39ayZcvCUy0NDQ366KOPJEk1NTWSpG3btqm5uVkzZ87UkSNHVFJSkpAG\ngbEg3DHVJS3cE4Vwx0Qg3DHVjTY7eUIVACxEuAOAhQh3ALAQ4Q5IklLk8XhcbbNmZUx0s0BMfKAK\nq8Xzgaq7uvu1XMsYL3ygCgAII9wBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLc\nAcBChDsAWChmuG/evFmZmZlaunTpsPsdx1F6err8fr/8fr/q6+sT3iQAID4xF8h+6qmn9Nxzz+nJ\nJ58csaasrExNTU0JbQwAMHox79xXrlypOXPmRK3hF/IAYHIZ85y7x+NRS0uLfD6fKioq1NHRkYi+\nAABjEHNaJpaSkhKFQiF5vV6dOnVKVVVVunjx4rC1dXV14deBQECBQGCspwcAqziOI8dxxnwcV4t1\ndHd3a+3atfrrX/8a84ALFy7UhQsXlJExdLUaFuvARGCxDkx1E7ZYR19fX/jEbW1tMsZEBDsAYHzF\nnJZ54okndPbsWV29elU5OTnatWuX7t69K0mqqanRiRMndPDgQaWkpMjr9aqxsTHpTQMAomMNVViN\naRlMdayhCgAII9wBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhw\nBwALEe4AYCHCHQAsRLgDgIUIdwCwUMxw37x5szIzM7V06dIRa7Zv3678/Hz5fD61t7cntEEAQPxi\nhvtTTz2l5ubmEfcHg0F1dXWps7NThw8fVm1tbUIbBADEL2a4r1y5UnPmzBlxf1NTk6qrqyVJpaWl\n6u/vV19fX+I6BADEbcxz7r29vcrJyQm/z87OVk9Pz1gPCwAYg5REHOThxVvvL0ocqa6uLvw6EAgo\nEAgk4vQAYA3HceQ4zpiPM+Zwz8rKUigUCr/v6elRVlbWsLWfDXcAQKSHb3x37do1quOMeVqmsrJS\nR48elSS1trZq9uzZyszMHOthAQBjEPPO/YknntDZs2d19epV5eTkaNeuXbp7964kqaamRhUVFQoG\ng8rLy9PMmTN15MiRpDcNAIjOYx6eME/WiTyeiLl5INnuf/7j5rpzW3e/lmsZ42W02ckTqgBgIcId\nACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3IG4\npcjj8bjaZs3KmOhm8TnFT/7Casn6yV9+HhjjhZ/8xefGrFkZru+cgc8rV+He3NysgoIC5efna/fu\n3RH7HcdRenq6/H6//H6/6uvrE94o8MDNmx/r/p2zmw34fIq5zN7AwIC2bdumP/zhD8rKytI3vvEN\nVVZWqrCwcEhdWVmZmpqaktYoAMC9mHfubW1tysvL04IFC5SamqoNGzbo5MmTEXXMKwLA5BEz3Ht7\ne5WTkxN+n52drd7e3iE1Ho9HLS0t8vl8qqioUEdHR+I7BQC4FnNaxs2HUiUlJQqFQvJ6vTp16pSq\nqqp08eLFiLq6urrw60AgoEAgEFezAGA7x3HkOM6YjxPzq5Ctra2qq6tTc3OzJOnnP/+5pk2bph07\ndoz43yxcuFAXLlxQRsZ/vuPLVyGRKO6/3ii5/9oiX4XE5JS0r0IuX75cnZ2d6u7u1p07d3T8+HFV\nVlYOqenr6wufvK2tTcaYIcEOABhfMadlUlJSdODAAa1evVoDAwPasmWLCgsLdejQIUlSTU2NTpw4\noYMHDyolJUVer1eNjY1JbxwAMDKeUMWUw7QMPk94QhUAEEa4A4CFCHcAsBDhDgAWItwBwEKEOwBY\niHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALxQz35uZmFRQUKD8/X7t3\n7x62Zvv27crPz5fP51N7e3vCmwQAxCdquA8MDGjbtm1qbm5WR0eHjh07pg8++GBITTAYVFdXlzo7\nO3X48GHV1tYmteFkS8TCtOOBPhPJSeKxU+TxeFxts2ZFX5pyaowlfU4WUZfZa2trU15enhYsWCBJ\n2rBhg06ePKnCwsJwTVNTk6qrqyVJpaWl6u/vV19fnzIzM5PXdRI5jqNAIBDx96amt/Tmm6dcHSM1\n9Qt65ZX/1pe+9KUEd/cfI/U52UyNPp0kHvue3K7adPOmJ+r+qTGW9DlZRA333t5e5eTkhN9nZ2fr\n/PnzMWt6enqmbLiP5PXXj+vkSY+k0pi1M2b8j5588r8SHu6zZmXo5s2Pw+937do1Yu0jj8zRJ59c\nT+j5h+shulRJd6P2+XDt51vKv5cQHNmDsUzWvy/sETXcY11oDzy8vp/b/24qSU2dphkz/lepqbGD\n7f/+72NNm5b4z6rvh+qDsa779zZSbXL+DYb2EItH0s8Urc+htfEc10ax7vLr9GAsk/XvC4uYKN59\n912zevXq8PuGhgbz6quvDqmpqakxx44dC7//+te/bq5cuRJxrNzcXKP7Vy4bGxsbm8stNzc3WkyP\nKOqd+/Lly9XZ2anu7m595Stf0fHjx3Xs2LEhNZWVlTpw4IA2bNig1tZWzZ49e9gpma6urminAgAk\nUNRwT0lJ0YEDB7R69WoNDAxoy5YtKiws1KFDhyRJNTU1qqioUDAYVF5enmbOnKkjR46MS+MAgJF5\nzMMT5gCAKS9pT6i+9NJLKiwslM/n049+9CPduHFj2Do3D0kl029/+1stXrxYX/jCF/Tee++NWLdg\nwQItW7ZMfr9f3/zmN8exQ/c9TvRYXr9+XeXl5Vq0aJG+973vqb+/f9i6iRrLqfJAXqw+HcdRenq6\n/H6//H6/6uvrx73HzZs3KzMzU0uXLh2xZjKMZaw+J8NYSlIoFNKqVau0ePFiLVmyRPv37x+2Lq4x\nHdVMvQtvv/22GRgYMMYYs2PHDrNjx46Imnv37pnc3Fzz4Ycfmjt37hifz2c6OjqS1dKwPvjgA/O3\nv/3NBAIBc+HChRHrFixYYK5duzaOnf2Hmx4nw1i+9NJLZvfu3cYYY1599dVh/82NmZixdDM+v//9\n782aNWuMMca0traa0tLSce3RbZ9nzpwxa9euHffePutPf/qTee+998ySJUuG3T8ZxtKY2H1OhrE0\nxpjLly+b9vZ2Y4wxN2/eNIsWLRrz9Zm0O/fy8vLw1wFLS0vV09MTUfPZh6RSU1PDD0mNp4KCAi1a\ntMhVrZmgGSw3PU6GsfzsA23V1dV68803R6wd77F0Mz4jPZA32fqUJu5afGDlypWaM2fOiPsnw1hK\nsfuUJn4sJWnevHkqLi6WJKWlpamwsFCXLl0aUhPvmI7LD4e9/vrrqqioiPj7cA9A9fb2jkdLcfN4\nPPrud7+r5cuX6xe/+MVEtxNhMozlZ59MzszMHPHCm4ixdDM+Iz2QN57c9OnxeNTS0iKfz6eKigp1\ndHSMa49uTIaxdGMyjmV3d7fa29tVWjr0gcl4xzTqt2ViKS8v15UrVyL+3tDQoLVr10qSXnnlFX3x\ni1/UT37yk4i68XrYyU2fsbzzzjuaP3++/vGPf6i8vFwFBQVauXLlpOlxosfylVdeiehnpJ6SPZbD\nmSoP5Lk5X0lJiUKhkLxer06dOqWqqipdvHhxHLqLz0SPpRuTbSxv3bql9evXa9++fUpLS4vYH8+Y\njincT58+HXX/r371KwWDQf3xj38cdn9WVpZCoVD4fSgUUnZ29lhaGlasPt2YP3++JOnLX/6yfvjD\nH6qtrS2hgTTWHifDWGZmZurKlSuaN2+eLl++rLlz5w5bl+yxHI6b8Xm4pqenR1lZWUnt62Fu+nzk\nkUfCr9esWaNnn31W169fV0ZG9B8eG0+TYSzdmExjeffuXa1bt04bN25UVVVVxP54xzRp0zLNzc3a\ns2ePTp48qenTpw9b89mHpO7cuaPjx4+rsrIyWS3FNNLc27/+9S/dvHlTkvTPf/5Tb7/9dtRvCSTT\nSD1OhrGsrKzUG2+8IUl64403hr1AJ2os3YxPZWWljh49KklRH8ib6D77+vrC10FbW5uMMZMq2KXJ\nMZZuTJaxNMZoy5YtKioq0vPPPz9sTdxjmqhPex+Wl5dnvvrVr5ri4mJTXFxsamtrjTHG9Pb2moqK\ninBdMBg0ixYtMrm5uaahoSFZ7Yzod7/7ncnOzjbTp083mZmZ5vvf/35En3//+9+Nz+czPp/PLF68\neNz7dNOjMRM/lteuXTOPP/64yc/PN+Xl5ebjjz+O6HMix3K48XnttdfMa6+9Fq7ZunWryc3NNcuW\nLYv67amJ7PPAgQNm8eLFxufzmW9961vm3XffHfceN2zYYObPn29SU1NNdna2+eUvfzkpxzJWn5Nh\nLI0x5s9//rPxeDzG5/OFMzMYDI5pTHmICQAsxDJ7AGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKE\nOwBYiHAHAAv9PzwzvJZ+FIO4AAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x1145bf110>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : 0.983739837398\nPercen within .1, confidence > .5 : 0.829268292683\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEACAYAAAB8nvebAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEUVJREFUeJzt3X9MVfXjx/HXUehrhphsCAQ0NpT4ocJVk9lku07RZOH8\n9YdazfmjP/qxspVz9U/0Q4ezren8w82VaW3Up9ayDJk/5qk0HVtQa8NpmWz4i/kLA8wh8P7+4aLw\nXuDcC5d73/V8bGe7nPu+57729uy145t7uI4xxggAYJUR0Q4AAAgd5Q0AFqK8AcBClDcAWIjyBgAL\nUd4AYCHP5X369Gn5fL6ebezYsdq+fXskswEA+uCE8znv7u5upaenq7a2VpmZmZHIBQDoR1jLJocP\nH1Z2djbFDQBRElZ5f/LJJ1q5cuVQZwEAeBTysklHR4fS09PV0NCg5OTkSOUCAPQjLtQXHDhwQNOm\nTQso7gkTJujs2bNDFgwA/guys7P122+/hfy6kJdNqqqqtGLFioD9Z8+elTEm5rc33ngj6hnISU5y\nkvGvLdyL3pDKu729XYcPH9aSJUvCejMAwNAIadnkgQce0NWrVyOVBQDg0X/uDku/3x/tCJ6Qc2iR\nc2jZkNOGjIMR1k06QQ/kOBqiQwHAf0a43fmfu/IGgH8DyhsALER5A4CFKG8AsBDlDQAWorwBwEKU\nNwBYiPIGAAtR3gBgIcobACxEeQOAhShvALAQ5Q0AFqK8AcBClDcAWIjyBgALUd4AYCHKGwAsRHkD\ngIUobwCwEOUNABbyXN4tLS1atmyZ8vLylJ+fr5MnT0YyFwCgH3FeB7700ksqKyvT559/rs7OTrW3\nt0cyFxCyxMQktbbeCNg/Zsw4/fHH9SgkAiLHMcaYgQbdvHlTPp9Pv//+e98Hchx5OBQQMY7jSAp2\nDnJuInaF252elk3OnTun5ORkrV69WlOnTtUzzzyjW7duhfxmAICh4WnZpLOzU3V1ddqxY4ceffRR\nrV+/XpWVlXrrrbd6jauoqOh57Pf75ff7hzIrAFjPdV25rjvo43haNrl8+bJmzpypc+fOSZKOHTum\nyspK7d+//+8DsWyCKGPZBDaK6LJJamqqMjMzdebMGUnS4cOHVVBQEPKbAQCGhqcrb0n6+eeftW7d\nOnV0dCg7O1u7d+/W2LFj/z4QV96IMq68YaNwu9NzeUcqADBUKG/YKKLLJgCA2EJ5A4CFKG8AsBDl\nDQAWorwBwEKUNwBYiPIGAAtR3gBgIcobACxEeQOAhShvALAQ5Q0AFqK8AcBClDcAWIjyBgALUd4A\nYCHKGwAsRHkDgIUobwCwEOUNABaivAHAQpQ3AFiI8gYAC8WFMjgrK0uJiYkaOXKk4uPjVVtbG6lc\nAIB+hFTejuPIdV0lJSVFKg8AwIOQl02MMZHIAQAIQUjl7TiO5s6dq+nTp2vXrl2RygQAGEBIyybH\njx9XWlqarly5otLSUuXm5qqkpKTn+YqKip7Hfr9ffr9/qHICwL+C67pyXXfQx3FMmOsgb775phIS\nEvTKK6/cPZDjsKSCqHIcR1Kwc5BzE7Er3O70vGxy69Yttba2SpLa29t18OBBTZ48OeQ3BAAMnudl\nk+bmZi1evFiS1NnZqSeffFLz5s2LWDAAQN/CXjYJOBDLJogylk1go4gvmwAAYgflDQAWorwBwEKU\nNwBYiPIGAAtR3gBgIcobACxEeQOAhShvALAQ5Q0AFqK8AcBClDcAWIjyBgALUd4AYCHKGwAsRHkD\ngIUobwCwEOUNABaivAHAQpQ3AFiI8gYAC1HeAGAhyhsALBRSeXd1dcnn86m8vDxSeYAIiJPjOL22\nxMSkaIcCBiWk8t62bZvy8/PlOE6k8gAR0CnJ9NpaW29ENxIwSJ7L+/z586qurta6detkjIlkJgDA\nADyX98svv6ytW7dqxAiWyQEg2uK8DNq/f7/Gjx8vn88n13X7HFdRUdHz2O/3y+/3DzIeAPy7uK7b\nb4965RgPayCvv/66PvroI8XFxen27dv6448/tHTpUu3du/fvAzkOyymIqru/iwl2Dgbbz/mK2BBu\nd3oq73/69ttv9e677+rrr78ekgDAUKG8YaNwuzOsBWw+bQIA0RXylXefB+LKG1HGlTdsNKxX3gCA\n6KK8AcBClDcAWIjyBgALUd4AYCHKGwAsRHkDgIUobwCwEOUNABaivAHAQpQ3AFiI8gYAC1HeAGAh\nyhsALER5A4CFKG8AsBDlDQAWorwBwEKUNwBYiPIGAAtR3gBgIcobACxEeQOAhTyX9+3bt1VcXKyi\noiLl5+frtddei2QuAEA/4rwOHDVqlI4eParRo0ers7NTs2bN0rFjxzRr1qxI5gMABBHSssno0aMl\nSR0dHerq6lJSUlJEQgEA+hdSeXd3d6uoqEgpKSmaPXu28vPzI5ULANAPz8smkjRixAj99NNPunnz\npubPny/XdeX3+3uer6io6Hns9/t7PQcAkFzXleu6gz6OY4wx4bzw7bff1v33369XX3317oEcR2Ee\nChgSjuNICnYOBtvP+YrYEG53el42uXr1qlpaWiRJf/75pw4dOiSfzxfyGwIABs/zssmlS5e0atUq\ndXd3q7u7W08//bTmzJkTyWwAgD6EvWwScCCWTRBlLJvARhFfNgEAxA7KGwAsRHkDgIUobwCwUEg3\n6QCxoK6uTleuXIl2DCCq+LQJrPPggykyJl+Oc1/Pvjt3LunWrV/Ep01gm3C7kytvWKerq1ttbf+T\nlPyPvZ9KWh6lRMDwY80bACxEeQOAhShvALAQ5Q0AFqK8AcBClDcAWIjyBgALUd4AYCHKGwAsRHkD\ngIUobwCwEOUNABaivAHAQpQ3AFiI8gYAC1HeAGAhz+Xd1NSk2bNnq6CgQJMmTdL27dsjmQsA0A/P\n36QTHx+v9957T0VFRWpra9O0adNUWlqqvLy8SOYDAATh+co7NTVVRUVFkqSEhATl5eXp4sWLEQsG\nAOhbWGvejY2Nqq+vV3Fx8VDnAQB4EPIXELe1tWnZsmXatm2bEhISej1XUVHR89jv98vv9w82HwD8\nq7iuK9d1B30cx4TwnfN37tzRE088oQULFmj9+vW9DxTm19cDoRozJlltbQ0K/u3xwc5BJ8h+zlfE\nhnC70/OyiTFGa9euVX5+fkBxAwCGl+fyPn78uD7++GMdPXpUPp9PPp9PNTU1kcwGAOiD5zXvWbNm\nqbu7O5JZAAAecYclAFiI8gYAC1HeAGAhyhsALER5A4CFKG8AsBDlDQAWorwBwEKUNwBYiPIGAAtR\n3gBgIcobACxEeeM/Kk6O4wRsiYlJ0Q4GeBLyN+kA/w6dCvbFDa2tzvBHAcLAlTcAWIjyBgALUd4A\nYCHKGwAsRHkDgIUobwCwEOUNABaivAHAQpQ3AFjIc3mvWbNGKSkpmjx5ciTzAAA88Fzeq1evVk1N\nTSSzAAA88lzeJSUlGjduXCSzAAA8Ys0bACw0pH9VsKKiouex3++X3+8fysMDgPVc15XruoM+jmOM\nCfy7mH1obGxUeXm5fvnll8ADOY5COBQQtjFjktXW1iAp+R97P5W0XMH+zKvkBNkfbN/d/ZzHGE7h\ndifLJgBgIc/lvWLFCj322GM6c+aMMjMztXv37kjmAgD0w/Oad1VVVSRzAABCwLIJAFiI8gYAC1He\nAGAhyhsALER5A4CFKG8AsBDlDQAWorwBwEKUNwBYiPIGAAtR3gBgIcobACxEeQOAhShvALAQ5Q0A\nFqK8gV7i5DhOry0xMSnaoYAAQ/oFxID9OnXvd1u2tjrRiQL0gytvALAQ5Q0AFqK8AcBClDcAWIjy\nBgALeS7vmpoa5ebmauLEidqyZUskMwEABuCpvLu6uvTCCy+opqZGDQ0Nqqqq0qlTpyKdLSJc1412\nBE/IOdTcQbw28LPf/X3+OzExKezPitsynzbktCHjYHgq79raWk2YMEFZWVmKj4/X8uXLtW/fvkhn\niwhb/kHJOdTcQbz2r89+995aW28EHX13v7exASktmU8bctqQcTA8lfeFCxeUmZnZ83NGRoYuXLgQ\nsVAAgP55usPScbjDDLFj5MgRGjPmSTnO//Xsu3Pngv78M4qhgOFmPDhx4oSZP39+z8+bN282lZWV\nvcZkZ2cH/r+SjY2Nja3fLTs720sNB3CMMUYD6Ozs1COPPKIjR47ooYce0owZM1RVVaW8vLyBXgoA\niABPyyZxcXHasWOH5s+fr66uLq1du5biBoAo8nTlDQCILWHfYblhwwbl5eWpsLBQS5Ys0c2bN4OO\ni/bNPZ999pkKCgo0cuRI1dXV9TkuKytLU6ZMkc/n04wZM4Yx4V1ec0Z7Pq9fv67S0lLl5ORo3rx5\namlpCTouWvPpZX5efPFFTZw4UYWFhaqvrx+2bH8ZKKPruho7dqx8Pp98Pp/eeeedYc+4Zs0apaSk\naPLkyX2OifY8SgPnjIW5lKSmpibNnj1bBQUFmjRpkrZv3x50XEhzGtZKuTHm4MGDpquryxhjzMaN\nG83GjRsDxnR2dprs7Gxz7tw509HRYQoLC01DQ0O4bxmWU6dOmdOnTxu/329+/PHHPsdlZWWZa9eu\nDWOy3rzkjIX53LBhg9myZYsxxpjKysqg/+7GRGc+vczPN998YxYsWGCMMebkyZOmuLg45jIePXrU\nlJeXD2uue3333Xemrq7OTJo0Kejz0Z7HvwyUMxbm0hhjLl26ZOrr640xxrS2tpqcnJxBn5thX3mX\nlpZqxIi7Ly8uLtb58+cDxsTCzT25ubnKycnxNNZEcQXJS85YmM+vvvpKq1atkiStWrVKX375ZZ9j\nh3s+vczPP/MXFxerpaVFzc3NMZVRiu65KEklJSUaN25cn89Hex7/MlBOKfpzKUmpqakqKiqSJCUk\nJCgvL08XL17sNSbUOR2SP0z1wQcfqKysLGC/TTf3OI6juXPnavr06dq1a1e04wQVC/PZ3NyslJQU\nSVJKSkqfJ1c05tPL/AQbE+zCI5oZHcfRDz/8oMLCQpWVlamhoWHY8nkV7Xn0KhbnsrGxUfX19Sou\nLu61P9Q57ffTJqWlpbp8+XLA/s2bN6u8vFyStGnTJt13331auXJlwLjhurnHS86BHD9+XGlpabpy\n5YpKS0uVm5urkpKSmMoZ7fnctGlTQJ6+Mg3HfN7L6/zceyU2nDeheXmvqVOnqqmpSaNHj9aBAwe0\naNEinTlzZhjShSaa8+hVrM1lW1ubli1bpm3btikhISHg+VDmtN/yPnToUL9BPvzwQ1VXV+vIkSNB\nn09PT1dTU1PPz01NTcrIyOj3mOEYKKcXaWlpkqTk5GQtXrxYtbW1Q142g80ZC/OZkpKiy5cvKzU1\nVZcuXdL48eODjhuO+byXl/m5d8z58+eVnp4e0VyhZhwzZkzP4wULFui5557T9evXlZQUO1+EHO15\n9CqW5vLOnTtaunSpnnrqKS1atCjg+VDnNOxlk5qaGm3dulX79u3TqFGjgo6ZPn26fv31VzU2Nqqj\no0OffvqpFi5cGO5bDlpfa1+3bt1Sa2urJKm9vV0HDx7s97fskdZXzliYz4ULF2rPnj2SpD179gQ9\nCaM1n17mZ+HChdq7d68k6eTJk3rwwQd7loGGg5eMzc3NPedAbW2tjDExVdxS9OfRq1iZS2OM1q5d\nq/z8fK1fvz7omJDnNNzfnk6YMME8/PDDpqioyBQVFZlnn33WGGPMhQsXTFlZWc+46upqk5OTY7Kz\ns83mzZvDfbuwffHFFyYjI8OMGjXKpKSkmMcffzwg59mzZ01hYaEpLCw0BQUFMZvTmOjP57Vr18yc\nOXPMxIkTTWlpqblx40ZAzmjOZ7D52blzp9m5c2fPmOeff95kZ2ebKVOm9PsJpGhl3LFjhykoKDCF\nhYVm5syZ5sSJE8Oecfny5SYtLc3Ex8ebjIwM8/7778fcPHrJGQtzaYwx33//vXEcxxQWFvZ0ZnV1\n9aDmlJt0AMBCfA0aAFiI8gYAC1HeAGAhyhsALER5A4CFKG8AsBDlDQAWorwBwEL/D7goJcegJUfV\nAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x112140b10>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "textOuput4\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0935960591133\nPercen within .1, all : 0.0443349753695\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF/dJREFUeJzt3X9MVff9x/EXDha1VofVUeXehgoIKHBxQ6kxNNduTEoC\n7dQ/cFlqgFnibBqzpDFps/SyrCrdX1v5o9Zo7fqD2CVudN+x207jtVaLNNMWE/06dCOFa0t2qxZa\n14K35/uH6/0WL9x7uT+4l4/PR0J6r+dzz3n74fSVj597zvmkWZZlCQBglBnJLgAAEH+EOwAYiHAH\nAAMR7gBgIMIdAAxEuAOAgcKGe2Njo7KyslRSUjLudp/Pp+rqapWVlam4uFgHDhyId40AgElKC3ed\n+/HjxzVnzhw98sgjOnv2bNB2l8ulL7/8Urt27ZLP51NBQYEGBweVnp6esKIBAKGFHblXVlYqMzNz\nwu2LFi3S0NCQJGloaEh33XUXwQ4ASRZzCm/ZskUPPPCAFi9erOHhYb3++uvxqAsAEIOYv1DduXOn\nysrKdPnyZb3//vvatm2bhoeH41EbACBKMY/cT548qaeeekqSlJubq3vvvVcXLlxQeXn5mHZ5eXm6\ndOlSrIcDgNtKbm6uLl68OOnPxTxyLyws1OHDhyVJg4ODunDhgpYsWRLU7tKlS7IsK+V/nn766aTX\nQJ3USJ3U+fVPtIPisCP3TZs26dixY/L5fLLb7WppadHo6Kgkqbm5WU8++aQaGhrkcDj01Vdf6dln\nn9X8+fOjKgYAEB9hw729vT3k9gULFujPf/5z3AoCAMSOO1Rv4XQ6k11CRKgzfqZDjRJ1xtt0qTNa\nYW9iituB0tI0RYcCAGNEm52M3AHAQIQ7ABiIcEdKmTt3vtLS0qL6mTuXq7SArzHnjpSSlpYmKdrz\nhHMM5mHOHQAQQLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADES4A4CBwoZ7Y2Oj\nsrKyVFJSMmEbj8ejFStWqLi42PhnJAPAdBD22TLHjx/XnDlz9Mgjj+js2bNB269du6Y1a9bozTff\nlM1mk8/n04IFC4IPxLNlEAGeLQOMlbBny1RWViozM3PC7a+99po2bNggm80mSeMGOwBgasU8597b\n26srV65o7dq1Ki8v18svvxyPugAAMQi7QHY4o6OjOn36tI4cOaLr169r9erVuu+++5Sfnx/U1uVy\nBV47nU7m5wHgFh6PRx6PJ+b9xBzudrtdCxYs0KxZszRr1izdf//9+uCDD8KGOwAg2K0D35aWlqj2\nE/O0zEMPPaR33nlHfr9f169f16lTp7Rs2bJYdwsAiEHYkfumTZt07Ngx+Xw+2e12tbS0aHR0VJLU\n3NyswsJCVVdXq7S0VDNmzNCWLVsIdwBIMpbZQ0rhUkhgLJbZAwAEEO4AYCDCHQAMRLgDgIEIdwAw\nUMw3MQHfNHfufA0PX012GcBtj0shEVexXcooSVwKCXwTl0ICAAIIdwAwEOEOAAYi3AHAQIQ7ABiI\ncAcAAxHuAGAgwh0ADES4A4CBwoZ7Y2OjsrKyVFJSErLde++9p/T0dB06dChuxQEAohM23BsaGuR2\nu0O28fv92rFjh6qrq7n9GwBSQNhwr6ysVGZmZsg2zz33nDZu3KiFCxfGrTAAQPRinnP3er3q6OjQ\n1q1bJX394CgAQDLF/Mjf7du3a/fu3YEnl4WalnG5XIHXTqdTTqcz1sMDgFE8Ho88Hk/M+4nokb99\nfX2qra3V2bNng7YtWbIkEOg+n0+zZ8/W3r17VVdXN/ZAPPL3tsAjf4H4ijY7Yx65//Of/wy8bmho\nUG1tbVCwAwCmVthw37Rpk44dOyafzye73a6WlhaNjo5KkpqbmxNeIABg8liJCXHFtAwQX6zEBAAI\nINwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDC\nHQAMRLgDgIEIdwAwUNhwb2xsVFZWlkpKSsbd/uqrr8rhcKi0tFRr1qxRT09P3IsEAExO2HBvaGiQ\n2+2ecPuSJUv09ttvq6enR7/85S/16KOPxrVAAMDkhQ33yspKZWZmTrh99erVmjdvniSpoqJCAwMD\n8asOABCVuM6579u3TzU1NfHcJQAgCunx2tHRo0e1f/9+nThxYsI2Lpcr8NrpdMrpdMbr8ABgBI/H\nI4/HE/N+0qwIltXu6+tTbW2tzp49O+72np4erV+/Xm63W3l5eeMfKMoVvDG9pKWlSYrl9xzL5znH\nYJ5oszPmaZkPP/xQ69ev1yuvvDJhsAMAplbYkfumTZt07Ngx+Xw+ZWVlqaWlRaOjo5Kk5uZm/exn\nP9Mf//hH3XPPPZKkjIwMdXd3Bx+IkfttgZE7EF/RZmdE0zLxQLjfHgh3IL6SNi0DAEg9hDsAGIhw\nBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADES4A4CBCHcA\nMFDYcG9sbFRWVpZKSkombPP4448rPz9fDodDZ86ciWuBAIDJCxvuDQ0NcrvdE27v7OzUxYsX1dvb\nqxdeeEFbt26Na4EAgMkLG+6VlZXKzMyccPsbb7yhzZs3S5IqKip07do1DQ4Oxq9CAMCkxTzn7vV6\nZbfbA+9tNpsGBgZi3S0AIAZx+UL11vX9bq6jCQBIlvRYd5Cdna3+/v7A+4GBAWVnZ4/b1uVyBV47\nnU45nc5YDw8ARvF4PPJ4PDHvJ82KYFntvr4+1dbW6uzZs0HbOjs71dbWps7OTnV1dWn79u3q6uoK\nPlCUK3hjern5r7ZYfs+xfJ5zDOaJNjvDjtw3bdqkY8eOyefzyW63q6WlRaOjo5Kk5uZm1dTUqLOz\nU3l5ebrjjjv04osvTr56AEBcRTRyj8uBGLnfFhi5A/EVbXZyhyoAGIhwBwADEe4AYCDCHQAMRLgD\ngIEIdwAwEOEOAAYi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADES4A4CBCHcAMBDhDgAGItwBwEBhw93t\ndquwsFD5+flqbW0N2u7z+VRdXa2ysjIVFxfrwIEDiagTADAJIVdi8vv9Kigo0OHDh5Wdna2VK1eq\nvb1dRUVFgTYul0tffvmldu3aJZ/Pp4KCAg0ODio9fewKfqzEdHtgJSYgvhKyElN3d7fy8vKUk5Oj\njIwM1dfXq6OjY0ybRYsWaWhoSJI0NDSku+66KyjYAQBTK2QKe71e2e32wHubzaZTp06NabNlyxY9\n8MADWrx4sYaHh/X6668nplIAQMRCjtxv/hM7tJ07d6qsrEyXL1/W+++/r23btml4eDhuBQIAJi/k\nyD07O1v9/f2B9/39/bLZbGPanDx5Uk899ZQkKTc3V/fee68uXLig8vLyoP25XK7Aa6fTKafTGUPp\nAGAej8cjj8cT835CfqF648YNFRQU6MiRI1q8eLFWrVoV9IXqL37xC82bN09PP/20BgcH9f3vf189\nPT2aP3/+2APxheptgS9UgfiKNjtDjtzT09PV1tamdevWye/3q6mpSUVFRdqzZ48kqbm5WU8++aQa\nGhrkcDj01Vdf6dlnnw0KdgDA1Ao5co/rgRi53xYYuQPxlZBLIQEA0xPhDgAGItwBwECEOwAYiHAH\nAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIHChrvb\n7VZhYaHy8/PV2to6bhuPx6MVK1aouLiYdVEBIAWEXInJ7/eroKBAhw8fVnZ2tlauXBm0huq1a9e0\nZs0avfnmm7LZbPL5fFqwYEHwgViJ6bbASkxAfCVkJabu7m7l5eUpJydHGRkZqq+vV0dHx5g2r732\nmjZs2CCbzSZJ4wY7AGBqhQx3r9cru90eeG+z2eT1ese06e3t1ZUrV7R27VqVl5fr5ZdfTkylAICI\npYfaePOf2KGNjo7q9OnTOnLkiK5fv67Vq1frvvvuU35+flBbl8sVeO10OpmfB4BbeDweeTyemPcT\nMtyzs7PV398feN/f3x+Yfvma3W7XggULNGvWLM2aNUv333+/Pvjgg7DhDgAIduvAt6WlJar9hJyW\nKS8vV29vr/r6+jQyMqKDBw+qrq5uTJuHHnpI77zzjvx+v65fv65Tp05p2bJlURUDAIiPkCP39PR0\ntbW1ad26dfL7/WpqalJRUZH27NkjSWpublZhYaGqq6tVWlqqGTNmaMuWLYQ7ACRZyEsh43ogLoW8\nLXApJBBfCbkUEgAwPRHuAGAgwh0ADES4A4CBCHcEmTt3vtLS0qL6AZAauFoGQWK74oWrZYB44moZ\nAEAA4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYKG+5ut1uFhYXKz89X\na2vrhO3ee+89paen69ChQ3EtEAAweSHD3e/367HHHpPb7da5c+fU3t6u8+fPj9tux44dqq6u5tke\nAJACQoZ7d3e38vLylJOTo4yMDNXX16ujoyOo3XPPPaeNGzdq4cKFCSsUABC5kOHu9Xplt9sD7202\nm7xeb1Cbjo4Obd26VZJ47CsApID0UBsjCert27dr9+7dgcdShpqWcblcgddOp1NOpzPiQoHw0mMa\nXNx5Z6aGhq7EsR5g8jwejzweT8z7Cfk8966uLrlcLrndbknSrl27NGPGDO3YsSPQZsmSJYFA9/l8\nmj17tvbu3au6urqxB+J57tPGdH6ee6zH5hxFqok2O0OG+40bN1RQUKAjR45o8eLFWrVqldrb21VU\nVDRu+4aGBtXW1mr9+vVxKxBTj3AHUke02RlyWiY9PV1tbW1at26d/H6/mpqaVFRUpD179kiSmpub\no6sWAJBQLLOXoubOna/h4atRfTbWuWNG7kDqSMi0TDwR7pMTa8DG0teEO5A6WEMVABAQcs4d01Vs\nlwQCmP4IdyPdUOxTIwCmM6ZlAMBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHA\nQIQ7ABiIcAcAAxHuAGCgiMLd7XarsLBQ+fn5am1tDdr+6quvyuFwqLS0VGvWrFFPT0/cCwUARC7s\nYh1+v18FBQU6fPiwsrOztXLlyqB1VN99910tW7ZM8+bNk9vtlsvlUldX19gDsVjHpNzOC2awWAfw\n/xK2WEd3d7fy8vKUk5OjjIwM1dfXq6OjY0yb1atXa968eZKkiooKDQwMTLoQAED8hA13r9cru90e\neG+z2eT1eidsv2/fPtXU1MSnOgBAVMIu1jGZFX2OHj2q/fv368SJE+Nud7lcgddOp1NOpzPifQPA\n7cDj8cjj8cS8n7Dhnp2drf7+/sD7/v5+2Wy2oHY9PT3asmWL3G63MjMzx93XN8MdABDs1oFvS0tL\nVPsJOy1TXl6u3t5e9fX1aWRkRAcPHlRdXd2YNh9++KHWr1+vV155RXl5eVEVAgCIn7Aj9/T0dLW1\ntWndunXy+/1qampSUVGR9uzZI0lqbm7Wr371K129elVbt26VJGVkZKi7uzuxlQMAJhT2Usi4HYhL\nISeFSyGTc2zOUaSahF0KCQCYfgh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADhb3Ofbr69NNPlZe3XP/5\nzxdRfT4tTTp0qF1VVVVxrgwAEs/YcP/ss8/0+ec39J///G9Un7/jjq36+OOP41wVYJa5c+drePhq\nVJ+9885MDQ1diXNF+Jqx4S5JaWnfkrQgys/OjG8xgIFuBnt0N34ND0f+UEJMHnPuAGAgwj2ERx/9\nudLS0qL6mTt3frLLxxSaO3d+1OcK5wsSwehpmVh98cVn4p+ciEQs0xM3P8/5gvhi5A4ABmLknjDp\nk1rFCgDiiXBPmBuK/dG3ABCdsNMybrdbhYWFys/PV2tr67htHn/8ceXn58vhcOjMmTNxLxIAMDkh\nw93v9+uxxx6T2+3WuXPn1N7ervPnz49p09nZqYsXL6q3t1cvvPBCYDWm6cuT7AIi5El2ARHyJLuA\nCHj++9/0qK92iV30x47lSptYr/IZnyfqeqZSPBahTmUhw727u1t5eXnKyclRRkaG6uvr1dHRMabN\nG2+8oc2bN0uSKioqdO3aNQ0ODiau4oTzJLuACHmSXUCEPMkuIAKe//7366m0aH5iFcmxnx73z6O9\nQ1T65lU+8fx7e6KuZyrd1uHu9Xplt9sD7202m7xeb9g2AwMDcS4TADAZIb9QjfSfm7eu75cKV4nM\nmDFDIyOfaO7c2kl97osvLmjmzL9rZOR0gioDgMQLGe7Z2dnq7+8PvO/v75fNZgvZZmBgQNnZ2UH7\nys3NTUroDw39z6Q/MzLS+413sdQc69833OdbknjsyXw2VJ2JPnakvq4xlX/f0kR9Gdv/W4moO7Lf\nebIHgi0tkz03p15ubm5UnwsZ7uXl5ert7VVfX58WL16sgwcPqr29fUyburo6tbW1qb6+Xl1dXfrO\nd76jrKysoH1dvHgxqgIBAJMXMtzT09PV1tamdevWye/3q6mpSUVFRdqzZ48kqbm5WTU1Ners7FRe\nXp7uuOMOvfjii1NSOABgYmnWrRPmAIBpL2HPlnniiSdUVFQkh8Oh9evX69NPPx23XSQ3SSXSH/7w\nBy1fvlzf+ta3dPr0xF+i5uTkqLS0VCtWrNCqVaumsMLIa0x2X165ckVVVVVaunSpfvSjH+natWvj\ntktWX06XG/LC1enxeDRv3jytWLFCK1as0K9//espr7GxsVFZWVkqKSmZsE0q9GW4OlOhL6Wb32eu\nXbtWy5cvV3FxsX73u9+N225SfWolyFtvvWX5/X7Lsixrx44d1o4dO4La3Lhxw8rNzbX+9a9/WSMj\nI5bD4bDOnTuXqJLGdf78eevChQuW0+m0/v73v0/YLicnx/rkk0+msLL/F0mNqdCXTzzxhNXa2mpZ\nlmXt3r173N+5ZSWnLyPpn7/85S/Wgw8+aFmWZXV1dVkVFRVTWmOkdR49etSqra2d8tq+6e2337ZO\nnz5tFRcXj7s9FfrSssLXmQp9aVmW9dFHH1lnzpyxLMuyhoeHraVLl8Z8fiZs5F5VVaUZM27uvqKi\nYtxr3yO5SSrRCgsLtXTp0ojaWkmawYqkxlToy2/e0LZ582b96U9/mrDtVPfldLkhL9LfY7LOxa9V\nVlYqMzNzwu2p0JdS+Dql5PelJN19990qKyuTJM2ZM0dFRUW6fPnymDaT7dMpeeTv/v37VVNTE/Tn\nkdwklSrS0tL0wx/+UOXl5dq7d2+yywmSCn05ODgYuFIqKytrwhMvGX05XW7Ii6TOtLQ0nTx5Ug6H\nQzU1NTp37tyU1hiJVOjLSKRiX/b19enMmTOqqKgY8+eT7dOYngpZVVU17iLSO3fuVG3tzZuHnnnm\nGX3729/WT37yk6B2U3WNayR1hnPixAktWrRI//73v1VVVaXCwkJVVlamTI3J7stnnnkmqJ6Jakp0\nX45nutyQF8nxvve976m/v1+zZ8/WX//6Vz388MP6xz/+MQXVTU6y+zISqdaXn332mTZu3Kjf/va3\nmjNnTtD2yfRpTOH+t7/9LeT2AwcOqLOzU0eOHBl3eyQ3ScVDuDojsWjRIknSwoUL9eMf/1jd3d1x\nDaRYa0yFvszKytLHH3+su+++Wx999JG++93vjtsu0X05nnjekJdIkdR55513Bl4/+OCD+vnPf64r\nV65o/vzUWaovFfoyEqnUl6Ojo9qwYYN++tOf6uGHHw7aPtk+Tdi0jNvt1m9+8xt1dHRo5syZ47b5\n5k1SIyMjOnjwoOrq6hJVUlgTzb1dv35dw8PDkqTPP/9cb731VsirBBJpohpToS/r6ur00ksvSZJe\neumlcU/QZPVlJP1TV1en3//+95IU8oa8ZNc5ODgYOA+6u7tlWVZKBbuUGn0ZiVTpS8uy1NTUpGXL\nlmn79u3jtpl0n8br295b5eXlWffcc49VVlZmlZWVWVu3brUsy7K8Xq9VU1MTaNfZ2WktXbrUys3N\ntXbu3JmociZ06NAhy2azWTNnzrSysrKs6urqoDovXbpkORwOy+FwWMuXL5/yOiOp0bKS35effPKJ\n9YMf/MDKz8+3qqqqrKtXrwbVmcy+HK9/nn/+eev5558PtNm2bZuVm5trlZaWhrx6Kpl1trW1WcuX\nL7ccDoe1evVq6913353yGuvr661FixZZGRkZls1ms/bt25eSfRmuzlToS8uyrOPHj1tpaWmWw+EI\nZGZnZ2dMfcpNTABgIBbIBgADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABjo/wDBW6uN\n6ROulgAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11321e050>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : NONE\ntextOuput5\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.916256157635\nPercen within .1, all : 0.743842364532\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF+ZJREFUeJzt3W1sU+fdx/Gfs9CbmpRAqmFYki0oCc0D4DhlsybBYtZl\nDGtE2UBTOsGiQqU0haJWaoXYmwU1zYp4gUBINEwbK5tE0NA0os5EZROHjaYht2g6TUs1kqlRnQDR\ngIXCVgQk1/2C1XdDHmwndh6ufj/SkWyfP+f8dfX0x+GyzzkuY4wRAMAqKdPdAAAg8Qh3ALAQ4Q4A\nFiLcAcBChDsAWIhwBwALxRTug4OD8vl82rBhw4h1juMoPT1dPp9PPp9P9fX1CW8SABCf1FiKDhw4\noKKiIt26dWvU9WVlZWpubk5oYwCAiYt65t7b26tQKKRnn31WY13vxHVQADCzRA33l156Sfv27VNK\nyuilLpdLra2t8nq9CgaD6uzsTHiTAID4jBvub731lhYtWiSfzzfm2XlpaanC4bD+8pe/6IUXXlBl\nZWVSGgUAxMGMY/fu3SYrK8vk5OSYxYsXG7fbbbZs2TLeHzE5OTnm+vXrIz7Pzc01klhYWFhY4lhy\nc3PHzdyxjBvun+U4jvnud7874vOrV6+aoaEhY4wxFy5cMF/5yldG35Fi3tW0+slPfjLdLcSEPhNn\nNvRoDH0m2mzpc6LZGdOvZT7lcrkkSY2NjZKkmpoanTx5UocPH1Zqaqrcbreampri2SQAIAliDvey\nsjKVlZVJehDqn9q+fbu2b9+e+M4AABPGFaoPCQQC091CTOgzcWZDjxJ9Jtps6XOiXP+d00n+jlwu\nfg8PAHGaaHZy5g4AFiLcAcBChDsAWIhwBwALEe4AYCHCHZ8b8+dnyOVyxbzMn58x3S0DE8ZPIfG5\n8eAK63iOQY5ZTD9+CgkAiCDcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIViCvfBwUH5fD5t2LBh\n1PU7d+5Ufn6+vF6vOjo6EtogACB+MYX7gQMHVFRUFHnM3meFQiF1d3erq6tLR44cUW1tbcKbBADE\nJ2q49/b2KhQK6dlnnx31Kqnm5mZVV1dLkvx+vwYGBtTf35/4TgEAMYsa7i+99JL27dunlJTRS/v6\n+pSdnR15n5WVpd7e3sR1CACI27gPyH7rrbe0aNEi+Xw+OY4zZt3DZ/SjTd9IUl1dXeR1IBCw/hmG\nABAvx3HGzdtYjXvjsB//+Mf61a9+pdTUVN25c0cff/yxNm7cqGPHjkVqnnvuOQUCAVVVVUmSCgoK\ndO7cOXk8nuE74sZhmGbcOAyzUVJuHNbQ0KBwOKwPP/xQTU1N+uY3vzks2CWpoqIi8llbW5sWLFgw\nItgBAFNr3GmZh3063dLY2ChJqqmpUTAYVCgUUl5enubNm6ejR48mvksAQFy4nzs+N5iWwWzE/dwB\nABGEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAs\nRLgDgIUIdwCwEOEOABaKGu537tyR3+9XSUmJioqKtHv37hE1juMoPT1dPp9PPp9P9fX1SWkWABCb\nqI/Zmzt3rs6ePSu326379+9r9erVOn/+vFavXj2srqysTM3NzUlrFAAQu5imZdxutyTp7t27Ghwc\nVEZGxogaHkcGADNHTOE+NDSkkpISeTwerV27VkVFRcPWu1wutba2yuv1KhgMqrOzMynNAgBiE3Va\nRpJSUlL0/vvv6+bNm1q3bp0cx1EgEIisLy0tVTgcltvt1unTp1VZWalLly6N2E5dXV3kdSAQGLYN\nAMCD7zAdx5n0dlwmzvmUV199VY8++qhefvnlMWuWLl2qixcvDpu+megTvIFEcblckuI5BjlmMf0m\nmp1Rp2WuXbumgYEBSdInn3yiM2fOyOfzDavp7++P7Ly9vV3GmFHn5QEAUyPqtMyVK1dUXV2toaEh\nDQ0NacuWLXrqqafU2NgoSaqpqdHJkyd1+PBhpaamyu12q6mpKemNAwDGFve0zIR3xLQMphnTMpiN\nkjYtAwCYfQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHA\nQoQ7AFiIcAcACxHuAGAhwh0ALDRuuN+5c0d+v18lJSUqKirS7t27R63buXOn8vPz5fV61dHRkZRG\nAQCxG/cxe3PnztXZs2fldrt1//59rV69WufPn9fq1asjNaFQSN3d3erq6tKFCxdUW1urtra2pDcO\nABhb1GkZt9stSbp7964GBwdHPPi6ublZ1dXVkiS/36+BgQH19/cnoVUAQKyihvvQ0JBKSkrk8Xi0\ndu1aFRUVDVvf19en7OzsyPusrCz19vYmvlMAQMzGnZaRpJSUFL3//vu6efOm1q1bJ8dxFAgEhtU8\n/PDWBw8iHqmuri7yOhAIjNgOAHzeOY4jx3EmvR2XieOx2q+++qoeffRRvfzyy5HPnnvuOQUCAVVV\nVUmSCgoKdO7cOXk8nuE7muATvIFEeXDSEc8xyDGL6TfR7Bx3WubatWsaGBiQJH3yySc6c+aMfD7f\nsJqKigodO3ZMktTW1qYFCxaMCHYAwNQad1rmypUrqq6u1tDQkIaGhrRlyxY99dRTamxslCTV1NQo\nGAwqFAopLy9P8+bN09GjR6ekcQDA2OKalpnUjpiWwTRjWgazUVKmZQAAsxPhDgAWItwBwEKEOwBY\niHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsFDXcw+Gw\n1q5dq+LiYi1fvlwHDx4cUeM4jtLT0+Xz+eTz+VRfX5+UZgEAsYn6gOw5c+Zo//79Kikp0e3bt/Xk\nk0+qvLxchYWFw+rKysrU3NyctEYBALGLeua+ePFilZSUSJLS0tJUWFioy5cvj6jjiTUAMHPENefe\n09Ojjo4O+f3+YZ+7XC61trbK6/UqGAyqs7MzoU0CAOITdVrmU7dv39amTZt04MABpaWlDVtXWlqq\ncDgst9ut06dPq7KyUpcuXUp4swCA2MQU7vfu3dPGjRu1efNmVVZWjlj/2GOPRV6vX79ezz//vG7c\nuKGMjIxhdXV1dZHXgUBAgUBgYl0DgKUcx5HjOJPejstEmSw3xqi6ulqPP/649u/fP2pNf3+/Fi1a\nJJfLpfb2dv3gBz9QT0/P8B1N8AneQKK4XC5J8RyDHLOYfhPNzqhn7u+8845+/etfa+XKlfL5fJKk\nhoYGffTRR5KkmpoanTx5UocPH1ZqaqrcbreampribgQAkDhRz9wTtiPO3DHNOHPHbDTR7OQKVQCw\nEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR\n7gBgIcIdACxEuAOAhaKGezgc1tq1a1VcXKzly5fr4MGDo9bt3LlT+fn58nq96ujoSHijAIDYRX3M\n3pw5c7R//36VlJTo9u3bevLJJ1VeXq7CwsJITSgUUnd3t7q6unThwgXV1taqra0tqY0DAMYW9cx9\n8eLFKikpkSSlpaWpsLBQly9fHlbT3Nys6upqSZLf79fAwID6+/uT0C4AIBZxzbn39PSoo6NDfr9/\n2Od9fX3Kzs6OvM/KylJvb29iOgQAxC3mcL99+7Y2bdqkAwcOKC0tbcT6hx/g+uBhxACA6RB1zl2S\n7t27p40bN2rz5s2qrKwcsT4zM1PhcDjyvre3V5mZmSPq6urqIq8DgYACgUD8HQOAxRzHkeM4k96O\nyzx8yv0QY4yqq6v1+OOPa//+/aPWhEIhHTp0SKFQSG1tbXrxxRdHfKHqcrlGnN0DU+nBvybjOQY5\nZjH9JpqdUcP9/Pnz+sY3vqGVK1dGploaGhr00UcfSZJqamokSTt27FBLS4vmzZuno0ePqrS0NCEN\nAolCuGM2Slq4JwrhjulGuGM2mmh2coUqAFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwB\nwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBCUcN969at8ng8WrFixajrHcdR\nenq6fD6ffD6f6uvrE94kACA+UR+Q/cwzz+iFF17Qj370ozFrysrK1NzcnNDGAAATF/XMfc2aNVq4\ncOG4NTyKDABmlknPubtcLrW2tsrr9SoYDKqzszMRfQEAJiHqtEw0paWlCofDcrvdOn36tCorK3Xp\n0qVRa+vq6iKvA4GAAoHAZHcPAFZxHEeO40x6Oy4Tw5xKT0+PNmzYoL/+9a9RN7h06VJdvHhRGRkZ\nw3c0wSd4A4nicrkkxXMMcsxi+k00Oyc9LdPf3x/ZcXt7u4wxI4IdADC1ok7LPP300zp37pyuXbum\n7Oxs7dmzR/fu3ZMk1dTU6OTJkzp8+LBSU1PldrvV1NSU9KYBAOOLaVomITtiWgbTjGkZzEbTNi0D\nAJh5CHcAsBDhDgAWItyBMaXK5XLFtMyfzy/EMLPwhSo+NybyhWrs9RzfSA6+UAUARBDuAGAhwh0A\nLES4A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR7pjV5s/PiPkWAcDnCbcfwKwW3y0FuP0AZp+k\n3X5g69at8ng8WrFixZg1O3fuVH5+vrxerzo6OuJuAgCQWFHD/ZlnnlFLS8uY60OhkLq7u9XV1aUj\nR46otrY2oQ0CAOIXNdzXrFmjhQsXjrm+ublZ1dXVkiS/36+BgQH19/cnrkMAQNwm/YVqX1+fsrOz\nI++zsrLU29s72c0CACYhNREbeXiyf6xfJtTV1UVeBwIBBQKBROweAKzhOI4cx5n0diYd7pmZmQqH\nw5H3vb29yszMHLX2s+EOABjp4RPfPXv2TGg7k56Wqaio0LFjxyRJbW1tWrBggTwez2Q3CwCYhKhn\n7k8//bTOnTuna9euKTs7W3v27NG9e/ckSTU1NQoGgwqFQsrLy9O8efN09OjRpDcNABgfFzFhVuMi\nJtiOZ6gCACIIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwB\nwEKEOwBYiHAHAAsR7gBgIcIdACwUU7i3tLSooKBA+fn52rt374j1juMoPT1dPp9PPp9P9fX1CW8U\nABC7qI/ZGxwc1I4dO/SHP/xBmZmZ+upXv6qKigoVFhYOqysrK1Nzc3PSGgUAxC7qmXt7e7vy8vKU\nk5OjOXPmqKqqSqdOnRpRxyPGAGDmiBrufX19ys7OjrzPyspSX1/fsBqXy6XW1lZ5vV4Fg0F1dnYm\nvlMAQMyiTss8eADx+EpLSxUOh+V2u3X69GlVVlbq0qVLI+rq6uoirwOBgAKBQFzNAoDtHMeR4ziT\n3o7LRJlPaWtrU11dnVpaWiRJP/3pT5WSkqJdu3aN+WeWLl2qixcvKiMj4/93NMEneAPjeXDyEetx\nFU9tvPUc30iOiWZn1GmZVatWqaurSz09Pbp7965OnDihioqKYTX9/f2Rnbe3t8sYMyzYAQBTK+q0\nTGpqqg4dOqR169ZpcHBQ27ZtU2FhoRobGyVJNTU1OnnypA4fPqzU1FS53W41NTUlvXEAwNiiTssk\nbEdMyyAJmJaB7ZI2LQMAmH0IdwCwEOEOABYi3AHAQoQ7kBCpcrlcMS3z5/MzYSQfv5bBrDaTfi3D\nL2uQDPxaBgAQQbgDgIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALBQ13FtaWlRQUKD8\n/Hzt3bt31JqdO3cqPz9fXq9XHR0dCW8SABCfccN9cHBQO3bsUEtLizo7O3X8+HF98MEHw2pCoZC6\nu7vV1dWlI0eOqLa2NqkNJ1siHkw7FWzuc/78jJjv05KgLhO0nVjFfh+aB8sjs+q+NTYfm7PJuI/Z\na29vV15ennJyciRJVVVVOnXqlAoLCyM1zc3Nqq6uliT5/X4NDAyov79fHo8neV0nkeM4CgQCwz77\n29/+pqamEzFv44knlmnz5s0J7my40fqciSbS561b/1J893SZLEdSIAHbidV9TeweN3X/XcZ261ai\n/sKbOJuPzdlk3HDv6+tTdnZ25H1WVpYuXLgQtaa3t3fWhvtompub9dprZ2VMeQzV17RkyatJD/dk\nmD8/47/BGt1jjy3Uxx/fSPh2ASTGuOEe6z97H75jWeL+uTwzpKSk6JFHruh//ud/o9YODd1Waurs\n/J46njPmeM4Q4zsTlxJzNg58zplxvPvuu2bdunWR9w0NDeb1118fVlNTU2OOHz8eef/EE0+Yq1ev\njthWbm6u0YP/w1lYWFhYYlxyc3PHi+kxjXvmvmrVKnV1damnp0df+tKXdOLECR0/fnxYTUVFhQ4d\nOqSqqiq1tbVpwYIFo07JdHd3j7crAEACjRvuqampOnTokNatW6fBwUFt27ZNhYWFamxslCTV1NQo\nGAwqFAopLy9P8+bN09GjR6ekcQDA2KbsSUwAgKmTtG/+XnnlFRUWFsrr9er73/++bt68OWpdLBdJ\nJdNvfvMbFRcX6wtf+ILee++9MetycnK0cuVK+Xw+fe1rX5vCDmPvcbrH8saNGyovL9eyZcv07W9/\nWwMDA6PWTddYzpYL8qL16TiO0tPT5fP55PP5VF9fP+U9bt26VR6PRytWrBizZiaMZbQ+Z8JYSlI4\nHNbatWtVXFys5cuX6+DBg6PWxTWmE5qpj8Hbb79tBgcHjTHG7Nq1y+zatWtEzf37901ubq758MMP\nzd27d43X6zWdnZ3JamlUH3zwgfn73/9uAoGAuXjx4ph1OTk55vr161PY2f+LpceZMJavvPKK2bt3\nrzHGmNdff33U/+bGTM9YxjI+v//978369euNMca0tbUZv98/pT3G2ufZs2fNhg0bpry3z/rTn/5k\n3nvvPbN8+fJR18+EsTQmep8zYSyNMebKlSumo6PDGGPMrVu3zLJlyyZ9fCbtzL28vFwpKQ827/f7\n1dvbO6LmsxdJzZkzJ3KR1FQqKCjQsmXLYqo10zSDFUuPM2EsP3tBW3V1tX73u9+NWTvVYxnL+Ix1\nQd5M61OavmPxU2vWrNHChQvHXD8TxlKK3qc0/WMpSYsXL1ZJSYkkKS0tTYWFhbp8+fKwmnjHdEp+\nkP2LX/xCwWBwxOejXQDV19c3FS3FzeVy6Vvf+pZWrVqln/3sZ9PdzggzYSw/e2Wyx+MZ88CbjrGM\nZXzGuiBvKsXSp8vlUmtrq7xer4LBoDo7O6e0x1jMhLGMxUwcy56eHnV0dMjv9w/7PN4xHffXMtGU\nl5fr6tWrIz5vaGjQhg0bJEmvvfaaHnnkEf3whz8cUTdVFzvF0mc077zzjpYsWaJ//vOfKi8vV0FB\ngdasWTNjepzusXzttddG9DNWT8key9HMlgvyYtlfaWmpwuGw3G63Tp8+rcrKSl26dGkKuovPdI9l\nLGbaWN6+fVubNm3SgQMHlJaWNmJ9PGM6qXA/c+bMuOt/+ctfKhQK6Y9//OOo6zMzMxUOhyPvw+Gw\nsrKyJtPSqKL1GYslS5ZIkr74xS/qe9/7ntrb2xMaSJPtcSaMpcfj0dWrV7V48WJduXJFixYtGrUu\n2WM5mljG5+Ga3t5eZWZmJrWvh8XS52OPPRZ5vX79ej3//PO6ceOGMjKm/6Zhn5oJYxmLmTSW9+7d\n08aNG7V582ZVVlaOWB/vmCZtWqalpUX79u3TqVOnNHfu3FFrPnuR1N27d3XixAlVVFQkq6Woxpp7\n+89//qNbt25Jkv7973/r7bffHvdXAsk0Vo8zYSwrKir05ptvSpLefPPNUQ/Q6RrLWManoqJCx44d\nk6RxL8ib7j77+/sjx0F7e7uMMTMq2KWZMZaxmCljaYzRtm3bVFRUpBdffHHUmrjHNFHf9j4sLy/P\nfPnLXzYlJSWmpKTE1NbWGmOM6evrM8FgMFIXCoXMsmXLTG5urmloaEhWO2P67W9/a7KysszcuXON\nx+Mx3/nOd0b0+Y9//MN4vV7j9XpNcXHxlPcZS4/GTP9YXr9+3Tz11FMmPz/flJeXm3/9618j+pzO\nsRxtfN544w3zxhtvRGq2b99ucnNzzcqVK8f99dR09nno0CFTXFxsvF6v+frXv27efffdKe+xqqrK\nLFmyxMyZM8dkZWWZn//85zNyLKP1ORPG0hhj/vznPxuXy2W8Xm8kM0Oh0KTGlIuYAMBCs/P2hQCA\ncRHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKEOwBY6P8AFMaxDVh4ehEAAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x11211df90>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : 0.976744186047\nPercen within .1, confidence > .5 : 0.837209302326\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEACAYAAAB8nvebAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEH5JREFUeJzt3W9olfX/x/HXpdv3ZzZX7oduS43B1Nymnh0TR+HiiE5z\nNdH0hmUhat3IogwSf3XHQSmKQWjeEKRMCyT6Q/ZnDU08ZaYs2gJByTAHU+cwdTZnMrd9fjekfZs7\n265ztvPnnc8HXHB2nc+u8+Lj5YuLzznXmeeccwIAmDIk2QEAANGjvAHAIMobAAyivAHAIMobAAyi\nvAHAIN/l3dzcrCVLlqigoECFhYU6duxYPHMBAPqQ5nfgyy+/rPLycn3yySdqb29Xa2trPHMBAPrg\n+blJ5+rVqwoGg/r9998TkQkA0A9fyyZnzpzRqFGjtGLFCk2bNk3PPfecrl+/Hu9sAIBe+Crv9vZ2\n1dbWavXq1aqtrdXdd9+tTZs2xTsbAKA3zofGxkaXl5fX9fPhw4fdY4891m1Mfn6+k8TGxsbGFsWW\nn5/vp4Z78HXlnZOTo3HjxunUqVOSpG+//VZFRUXdxpw+fVrOuZTf1q9fn/QM5CQnOcn493b69Gk/\nNdyD70+bvPPOO1q2bJna2tqUn5+vXbt2xfSCAICB813egUBAP/30UzyzAAB8uuPusAyFQsmO4As5\nBxc5B5eFnBYyDoSvz3n7OpDnaZAOBQB3jFi784678gaAfwPKGwAMorwBwCDKGwAMorwBwCDKGwAM\norwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwB\nwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMorwBwCDKGwAMSotmcF5enjIzMzV06FClp6erpqYmXrmA\nmGRmZqml5UqP/SNGjNSff15OQiIgPqIqb8/zFA6HlZWVFa88wIDcKm4XYb+X+DBAHEW9bOJcz/8Y\nAIDEiqq8Pc/TnDlzNH36dO3cuTNemQAA/Yhq2eTIkSPKzc3VxYsXVVZWpkmTJqm0tDRe2QAAvYiq\nvHNzcyVJo0aN0qJFi1RTU9OtvCsrK7seh0IhhUKhQQkJAP8W4XBY4XB4wMfxnM9F7OvXr6ujo0Mj\nRoxQa2ur5s6dq/Xr12vu3Lm3DuR5rIcj6TzPU6Q3LCXOT6SmWLvT95V3U1OTFi1aJElqb2/XsmXL\nuoobAJBYvq+8+z0QV95IAVx5w5pYu5M7LHGHSJPned22zEzuV4BdXHnjX6WvK++e+zlnkXxceQPA\nHYTyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjy\nBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCDKG8AMIjyBgCD\nKG8AMCiq8u7o6FAwGFRFRUW88gAAfIiqvLdu3arCwkJ5nhevPAAAH3yX99mzZ1VVVaVnn31Wzrl4\nZgIA9MN3eb/yyivasmWLhgxhmRwAki3Nz6CvvvpKo0ePVjAYVDgc7nVcZWVl1+NQKKRQKDTAeADw\n7xIOh/vsUb8852MN5PXXX9cHH3ygtLQ03bhxQ3/++acWL16sPXv2/PdAnsdyCpLu1vsxkc7DSPs5\nZ5F8sXanr/L+p++++05vvfWWvvzyy0EJAAwmyhvWxNqdMS1g82kTAEiuqK+8ez0QV95IAVx5w5qE\nXnkDAJKL8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhv\nADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI8gYAgyhvADCI\n8gYAgyhvADCI8gYAg3yX940bN1RSUqLi4mIVFhbqtddei2cuAEAf0vwOHDZsmA4dOqThw4ervb1d\nM2fO1A8//KCZM2fGMx8AIIKolk2GDx8uSWpra1NHR4eysrLiEgoA0Leoyruzs1PFxcXKzs7WrFmz\nVFhYGK9cAIA++F42kaQhQ4bol19+0dWrVzVv3jyFw2GFQqGu5ysrK7seh0Khbs8BAKRwOKxwODzg\n43jOORfLL77xxhu666679Oqrr946kOcpxkMBg8bzPEmRzsNI+zlnkXyxdqfvZZM//vhDzc3NkqS/\n/vpLBw4cUDAYjPoFAQAD53vZpLGxUcuXL1dnZ6c6Ozv1zDPPaPbs2fHMBgDoRczLJj0OxLIJUgDL\nJrAm7ssmAIDUQXkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkD\ngEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYRHkDgEGUNwAYlJbsAEAsWltbdeXKlWTH\nAJKG8oZJc+cuUm1tnYYM+Z+ufe3t15OYCEgsyhsmtbTc0I0bn0p65B97P5W0JEmJgMRizRsADKK8\nAcAgyhsADKK8cQdLk+d53bbMzKxkhwJ88V3eDQ0NmjVrloqKijR58mRt27YtnrmABGiX5LptLS18\n/BA2+P60SXp6ut5++20VFxfr2rVrevDBB1VWVqaCgoJ45gMAROD7yjsnJ0fFxcWSpIyMDBUUFOj8\n+fNxCwYA6F1Ma9719fWqq6tTSUnJYOcBAPgQ9U06165d05IlS7R161ZlZGR0e66ysrLrcSgUUigU\nGmg+APhXCYfDCofDAz6O55xzfgffvHlTjz/+uObPn681a9Z0P5DnKYpDAQMydeojOn78TUW+wzLS\neehF2B95H+cxEinW7vS9bOKc06pVq1RYWNijuAEAieW7vI8cOaIPP/xQhw4dUjAYVDAYVHV1dTyz\nAQB64XvNe+bMmers7IxnFgCAT9xhCQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDl\nDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAG\nUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYJDv8l65cqWys7M1ZcqUeOYBAPjgu7xXrFih\n6urqeGYBAPjku7xLS0s1cuTIeGYBAPjEmjcAGER5A4BBaYN5sMrKyq7HoVBIoVBoMA8PAOaFw2GF\nw+EBH8dzzjm/g+vr61VRUaHjx4/3PJDnKYpDAQMydeojOn78TUmP/GPvp5KWSIp0HnoR9kfex3mM\nRIq1O30vmzz55JN6+OGHderUKY0bN067du2K+sUAAIPD97LJ3r1745kDABAF3rAEAIMobwAwiPIG\nAIMobwAwiPIGAIMobwAwiPIGAIMobwAwiPIGAIMobwAwiPIGAIMob6CbNHme12PLzMxKdjCgm0H9\nPm/AvnZF+krZlhYv8VGAPnDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAGUd4AYBDlDQAG\nUd4AYBDlDQAGUd7AIMvMzOKLrRB3fDEVMMhaWq7o9i+34outMNi48gYAgyhvADDId3lXV1dr0qRJ\nmjBhgjZv3hzPTEAK6vlHGljHRjL5Ku+Ojg69+OKLqq6u1okTJ7R3716dPHky3tniIhwOJzuCL+RM\nNX//kYb/brfWtgeXlfm0kNNCxoHwVd41NTUaP3688vLylJ6erqVLl2rfvn3xzhYXVv5ByXlnsjKf\nFnJayDgQvsr73LlzGjduXNfPY8eO1blz5+IWCgDQN18fFfQ8PuaE1JKePkR33/1/Gjr0f7v2tbc3\n6vr1JIYCEsn5cPToUTdv3ryunzdu3Og2bdrUbUx+fn73BUE2NjY2tn63/Px8PzXcg+ecc+pHe3u7\nHnjgAR08eFD33XefZsyYob1796qgoKC/XwUAxIGvZZO0tDRt375d8+bNU0dHh1atWkVxA0AS+bry\nBgCklpjvsFy7dq0KCgoUCAT0xBNP6OrVqxHHJfvmno8//lhFRUUaOnSoamtrex2Xl5enqVOnKhgM\nasaMGQlMeIvfnMmez8uXL6usrEwTJ07U3Llz1dzcHHFcsubTz/y89NJLmjBhggKBgOrq6hKW7W/9\nZQyHw7rnnnsUDAYVDAb15ptvJjzjypUrlZ2drSlTpvQ6JtnzKPWfMxXmUpIaGho0a9YsFRUVafLk\nydq2bVvEcVHNaUwr5c65/fv3u46ODuecc+vWrXPr1q3rMaa9vd3l5+e7M2fOuLa2NhcIBNyJEydi\nfcmYnDx50v36668uFAq5n3/+uddxeXl57tKlSwlM1p2fnKkwn2vXrnWbN292zjm3adOmiP/uziVn\nPv3Mz9dff+3mz5/vnHPu2LFjrqSkJOUyHjp0yFVUVCQ01+2+//57V1tb6yZPnhzx+WTP49/6y5kK\nc+mcc42Nja6urs4551xLS4ubOHHigM/NmK+8y8rKNGTIrV8vKSnR2bNne4xJhZt7Jk2apIkTJ/oa\n65K4guQnZyrM5xdffKHly5dLkpYvX67PP/+817GJnk8/8/PP/CUlJWpublZTU1NKZZSSey5KUmlp\nqUaOHNnr88mex7/1l1NK/lxKUk5OjoqLiyVJGRkZKigo0Pnz57uNiXZOB+WLqd577z2Vl5f32G/p\n5h7P8zRnzhxNnz5dO3fuTHaciFJhPpuampSdnS1Jys7O7vXkSsZ8+pmfSGMiXXgkM6Pnefrxxx8V\nCARUXl6uEydOJCyfX8meR79ScS7r6+tVV1enkpKSbvujndM+P21SVlamCxcu9Ni/ceNGVVRUSJI2\nbNig//znP3rqqad6jEvUzT1+cvbnyJEjys3N1cWLF1VWVqZJkyaptLQ0pXImez43bNjQI09vmRIx\nn7fzOz+3X4kl8iY0P681bdo0NTQ0aPjw4frmm2+0cOFCnTp1KgHpopPMefQr1eby2rVrWrJkibZu\n3aqMjIwez0czp32W94EDB/oM8v7776uqqkoHDx6M+PyYMWPU0NDQ9XNDQ4PGjh3b5zFj0V9OP3Jz\ncyVJo0aN0qJFi1RTUzPoZTPQnKkwn9nZ2bpw4YJycnLU2Nio0aNHRxyXiPm8nZ/5uX3M2bNnNWbM\nmLjmijbjiBEjuh7Pnz9fq1ev1uXLl5WVlTrfYpjsefQrleby5s2bWrx4sZ5++mktXLiwx/PRzmnM\nyybV1dXasmWL9u3bp2HDhkUcM336dP3222+qr69XW1ubPvroIy1YsCDWlxyw3ta+rl+/rpaWFklS\na2ur9u/f3+e77PHWW85UmM8FCxZo9+7dkqTdu3dHPAmTNZ9+5mfBggXas2ePJOnYsWO69957u5aB\nEsFPxqampq5zoKamRs65lCpuKfnz6FeqzKVzTqtWrVJhYaHWrFkTcUzUcxrru6fjx493999/vysu\nLnbFxcXu+eefd845d+7cOVdeXt41rqqqyk2cONHl5+e7jRs3xvpyMfvss8/c2LFj3bBhw1x2drZ7\n9NFHe+Q8ffq0CwQCLhAIuKKiopTN6Vzy5/PSpUtu9uzZbsKECa6srMxduXKlR85kzmek+dmxY4fb\nsWNH15gXXnjB5efnu6lTp/b5CaRkZdy+fbsrKipygUDAPfTQQ+7o0aMJz7h06VKXm5vr0tPT3dix\nY927776bcvPoJ2cqzKVzzh0+fNh5nucCgUBXZ1ZVVQ1oTrlJBwAM4s+gAYBBlDcAGER5A4BBlDcA\nGER5A4BBlDcAGER5A4BBlDcAGPT/DMRs8toBYK4AAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x113c7c110>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "textOuput6\nPercen within .2, all : " | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0689655172414\nPercen within .1, all : 0.00985221674877\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEvZJREFUeJzt3W1sVNW+x/HfxvaElNJCEy3Y1tS0JR0KTKeiExORIVqV\nRpqqxFRjJNIXFUFCTmJ4aclFlPiCwG2CD1GUmACReKU3Dg1qHFSwNsHehKRGCnGu06KNgnioHtNa\n133BdWKZh07nmcX3k+ykM3vtWX9XN78sd/fa4xhjjAAAVpmV6wIAAOlHuAOAhQh3ALAQ4Q4AFiLc\nAcBChDsAWChuuIdCIa1atUoNDQ1asmSJ9uzZE9EmEAiotLRUHo9HHo9H27dvz1ixAIDEFMTbWVhY\nqF27dqmxsVFjY2O67bbb1NzcLJfLNaXdypUr1dPTk9FCAQCJiztzX7BggRobGyVJxcXFcrlcOn/+\nfEQ71kEBQH5J+Jp7MBjUwMCAvF7vlPcdx9HJkyfldrvV0tKiwcHBtBcJAJiZuJdl/jI2Nqa1a9dq\n9+7dKi4unrKvqalJoVBIRUVFOnr0qNra2nTmzJmMFAsASJCZxvj4uLnvvvvMrl27pmtqjDGmurra\nXLhwIeL9mpoaI4mNjY2NbQZbTU1NQtl7tbiXZYwx6ujo0OLFi7Vly5aobUZHR8PX3Pv7+2WMUVlZ\nWUS7c+fOyRiT99vzzz+f8xpsqfNaqJE6qTPft3PnzsWL6ZjiXpY5ceKE3nnnHS1btkwej0eStGPH\nDn333XeSpM7OTh0+fFh79+5VQUGBioqKdPDgwaQKAQCkT9xwv+uuu/Tnn3/G/YCNGzdq48aNaS0K\nAJAaVqhexefz5bqEhFwLdV4LNUrUmW7UmR8cY4zJSkeOoyx1BQDWSDY7mbkDgIUIdwCwEOEOABYi\n3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR7gBgIcId\nACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOGOvFJSUibH\ncZLaSkrKcl0+kDccY4zJSkeOoyx1hWuY4ziSkj1POMdgn2Szk5k7AFiIcAcACxHuAGAhwh0ALES4\nA4CFCHcAsFDccA+FQlq1apUaGhq0ZMkS7dmzJ2q7zZs3q66uTm63WwMDAxkpFACQuIJ4OwsLC7Vr\n1y41NjZqbGxMt912m5qbm+VyucJt/H6/zp49q6GhIX355ZfasGGD+vr6Ml44ACC2uDP3BQsWqLGx\nUZJUXFwsl8ul8+fPT2nT09OjdevWSZK8Xq8uXbqk0dHRDJULAEhEwtfcg8GgBgYG5PV6p7w/MjKi\nqqqq8OvKykoNDw+nr0IAwIzFvSzzl7GxMa1du1a7d+9WcXFxxP6rl8ZeWUIeqaurK/yzz+eTz+dL\nvFIAuA4EAgEFAoGUP2faZ8tMTEzowQcf1OrVq7Vly5aI/U8//bR8Pp/a29slSfX19Tp+/LjKy8un\ndsSzZZAAni0DTJWRZ8sYY9TR0aHFixdHDXZJam1t1f79+yVJfX19mjdvXkSwAwCyK+7M/fPPP9fd\nd9+tZcuWhS+17NixQ999950kqbOzU5K0adMm9fb2as6cOdq3b5+ampoiO2LmjgQwcwemSjY7eeQv\n8grhDkzFI38BAGGEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwAL\nEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDh\nDgAWItwBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALTRvu\n69evV3l5uZYuXRp1fyAQUGlpqTwejzwej7Zv3572IgEAM1MwXYOnnnpKzz77rJ588smYbVauXKme\nnp60FgYASN60M/cVK1Zo/vz5cdsYY9JWEAAgdSlfc3ccRydPnpTb7VZLS4sGBwfTURcAIAXTXpaZ\nTlNTk0KhkIqKinT06FG1tbXpzJkz6agNAJCklMN97ty54Z9Xr16tZ555RhcvXlRZWVlE266urvDP\nPp9PPp8v1e4BwCqBQECBQCDlz3FMAhfMg8Gg1qxZo9OnT0fsGx0d1U033STHcdTf369HH31UwWAw\nsiPH4dr8daKkpEyXL/+cwicke55wjsE+yWbntDP3xx57TMePH9dPP/2kqqoqbdu2TRMTE5Kkzs5O\nHT58WHv37lVBQYGKiop08ODBmVcPq1wJ9uQDGkDqEpq5p6UjZu7XDcdxlFq4M3MH/pJsdrJCFQAs\nRLgDgIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWItwBwEKE\nOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwALEe4AYCHCHQAsRLgD\ngIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0ALES4A4CFCHcAsBDhDgAWmjbc169fr/Ly\nci1dujRmm82bN6uurk5ut1sDAwNpLRAAMHPThvtTTz2l3t7emPv9fr/Onj2roaEhvfbaa9qwYUNa\nCwQAzNy04b5ixQrNnz8/5v6enh6tW7dOkuT1enXp0iWNjo6mr0IAwIylfM19ZGREVVVV4deVlZUa\nHh5O9WMBAClIyx9UjTFTXjuOk46PBQAkqSDVD6ioqFAoFAq/Hh4eVkVFRdS2XV1d4Z99Pp98Pl+q\n3QOAVQKBgAKBQMqf45irp91RBINBrVmzRqdPn47Y5/f71d3dLb/fr76+Pm3ZskV9fX2RHTlOxAwf\ndrryf27J/q5TO5ZzDLZJNjunnbk/9thjOn78uH766SdVVVVp27ZtmpiYkCR1dnaqpaVFfr9ftbW1\nmjNnjvbt2zfz6gEAaZXQzD0tHTFzv24wcwfSJ9nsZIUqAFiIcAcACxHuAGAhwh0ALES4A4CFCHcA\nsBDhDgAWItwBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDsAWIhwBwAL\nEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYi3AHAQoQ7AFiIcAcACxHuAGAhwh0xlZSUyXGcGW8Acs8x\nxpisdOQ4ylJXSJMrQZ3M7yzZ41I/lnMMtkk2O5m5A4CFCHcAsBDhDgAWItwBwEKEOwBYiHAHAAsR\n7gBgoWnDvbe3V/X19aqrq9POnTsj9gcCAZWWlsrj8cjj8Wj79u0ZKRQAkLiCeDsnJye1adMmffTR\nR6qoqNDtt9+u1tZWuVyuKe1Wrlypnp6ejBYKAEhc3Jl7f3+/amtrVV1drcLCQrW3t+vIkSMR7VgV\nCAD5JW64j4yMqKqqKvy6srJSIyMjU9o4jqOTJ0/K7XarpaVFg4ODmakUAJCwuJdlEnkIVFNTk0Kh\nkIqKinT06FG1tbXpzJkzUdt2dXWFf/b5fPL5fDMqFgBsFwgEFAgEUv6cuA8O6+vrU1dXl3p7eyVJ\nL774ombNmqWtW7fG/MBbb71Vp06dUllZ2dSOeHDYNYcHhwG5l5EHhy1fvlxDQ0MKBoMaHx/XoUOH\n1NraOqXN6OhouOP+/n4ZYyKCHQCQXXEvyxQUFKi7u1v333+/Jicn1dHRIZfLpVdffVWS1NnZqcOH\nD2vv3r0qKChQUVGRDh48mJXCAQCx8Tx3xMRlGSD3eJ47okr225T4RiXg2sbM3XLJz76l5GfRzNyB\ndGHmDgAII9wBwEKEOwBYiHAHAAsR7gBgIcIdACxEuAOAhQh3ALAQ4Q4AFiLcAcBChDssUpDUM3RK\nSnhENezDs2Usd709WybZejk3ka94tgwAIIxwBwALEe4AYCHCHQAsRLgDgIUIdwCwEOEOABYqyHUB\n2TY2NqaBgYGkjp01a5a8Xq8KCq67YQNwjbnuUmr//v365z//Q7Nn18742H//+7R6e/9Lq1atykBl\nsZWUlOny5Z+z2ieAa9t1F+6Tk5OS1uqXX/5zxseWlt77/8dn15VgT2XVJoDrDdfcAcBChDsAWIhw\nBwALEe4AYCHCHQAsRLgDgIUI9ywpKSlL6luCrnzZBgDMzHV3n3uucK86gGxi5g4AFiLcAcBChDsA\nWGjacO/t7VV9fb3q6uq0c+fOqG02b96suro6ud3upJ+4CABIn7jhPjk5qU2bNqm3t1eDg4M6cOCA\nvv766ylt/H6/zp49q6GhIb322mvasGFDRgvOvECuC0hQINcFJCCQ6wKsEggEcl1CQqgzP8S9W6a/\nv1+1tbWqrq6WJLW3t+vIkSNyuVzhNj09PVq3bp0kyev16tKlSxodHVV5eXnmqs6ogCRfjmtIRED5\nX2dA+V+jJKVyy2mhpIksH5uLPpM/du7c+frXvy4m2WfmBAIB+Xy+XJeRMXFn7iMjI6qqqgq/rqys\n1MjIyLRthoeH01wmkEkmhW0ii8c+n4M+kzn2+Smv+S6C3Ig7c090NmPM1Pu383nhzaxZs+Q4/62S\nkmDU/b///o1mzz4VY9//aNYs/gYNIP/FDfeKigqFQqHw61AopMrKyrhthoeHVVFREfFZNTU1eRX6\nv//+vzH3jY8Pxdx3zz33pNBrKv/90Y7dlqN+Z3JcojWmo89Ujs1Fn8kc+9d45nu9U3/v+fRv/++2\nbUvm/MyumpqapI6LG+7Lly/X0NCQgsGgbr75Zh06dEgHDhyY0qa1tVXd3d1qb29XX1+f5s2bF/V6\n+9mzZ5MqEAAwc3HDvaCgQN3d3br//vs1OTmpjo4OuVwuvfrqq5Kkzs5OtbS0yO/3q7a2VnPmzNG+\nffuyUjgAIDbHXH3BHABwzcvYXwefe+45uVwuud1uPfzww/rll1+itktkkVSmvPvuu2poaNANN9yg\nr776Kma76upqLVu2TB6PR3fccUcWK7wi0TpzOZaSdPHiRTU3N2vRokW67777dOnSpajtcjWe18qC\nvOnqDAQCKi0tlcfjkcfj0fbt27Ne4/r161VeXq6lS5fGbJMPYzldnfkwlqFQSKtWrVJDQ4OWLFmi\nPXv2RG034/E0GXLs2DEzOTlpjDFm69atZuvWrRFt/vjjD1NTU2O+/fZbMz4+btxutxkcHMxUSRG+\n/vpr88033xifz2dOnToVs111dbW5cOFC1uq6WiJ15nosjTHmueeeMzt37jTGGPPSSy9F/Z0bk5vx\nTGR8PvjgA7N69WpjjDF9fX3G6/VmtcZE6/zkk0/MmjVrsl7b33366afmq6++MkuWLIm6Px/G0pjp\n68yHsfz+++/NwMCAMcaYy5cvm0WLFqXl3MzYzL25uTl826DX64167/vfF0kVFhaGF0llS319vRYt\nWpRQW5PDq1eJ1JnrsZSmLmhbt26d3n///Zhtsz2eiYxPrAV5+VanlNvzUZJWrFih+fPnx9yfD2Mp\nTV+nlPuxXLBggRobGyVJxcXFcrlcOn/+/JQ2yYxnVm7afvPNN9XS0hLxfiKLpPKB4zi69957tXz5\ncr3++uu5LieqfBjLv69MLi8vj3ny5WI8r5UFeYnU6TiOTp48KbfbrZaWFg0ODma1xkTkw1gmIt/G\nMhgMamBgQF6vd8r7yYxnSl/W0dzcrB9++CHi/R07dmjNmjWSpBdeeEH/+Mc/9Pjjj0e0y8a9r4nU\nOJ0TJ05o4cKF+vHHH9Xc3Kz6+nqtWLEir+rM1n3Esep84YUXIuqJVVM2xvNq18qCvET6a2pqUigU\nUlFRkY4ePaq2tjadOXMmC9XNTK7HMhH5NJZjY2Nau3atdu/ereLi4oj9Mx3PlML9ww8/jLv/rbfe\nkt/v18cffxx1fyKLpFI1XY2JWLhwoSTpxhtv1EMPPaT+/v60h1GqdWZjLKX4dZaXl+uHH37QggUL\n9P333+umm26K2i4b43m1dC7Iy6RE6pw7d27459WrV+uZZ57RxYsXVVZWlrU6p5MPY5mIfBnLiYkJ\nPfLII3riiSfU1tYWsT+Z8czYZZne3l69/PLLOnLkiGbPnh21zd8XSY2Pj+vQoUNqbW3NVElxxbru\n9ttvv+ny5cuSpF9//VXHjh2Le4dApsWqMx/GsrW1VW+//bYk6e233456kuZqPBMZn9bWVu3fv1+S\n4i7Iy3Wdo6Oj4fOgv79fxpi8CnYpP8YyEfkwlsYYdXR0aPHixdqyZUvUNkmNZzr+2htNbW2tueWW\nW0xjY6NpbGw0GzZsMMYYMzIyYlpaWsLt/H6/WbRokampqTE7duzIVDlRvffee6aystLMnj3blJeX\nmwceeCCixnPnzhm3223cbrdpaGjIeo2J1mlMbsfSGGMuXLhg7rnnHlNXV2eam5vNzz//HFFnLscz\n2vi88sor5pVXXgm32bhxo6mpqTHLli2LewdVLuvs7u42DQ0Nxu12mzvvvNN88cUXWa+xvb3dLFy4\n0BQWFprKykrzxhtv5OVYTldnPozlZ599ZhzHMW63O5yXfr8/5fFkERMAWIhHHAKAhQh3ALAQ4Q4A\nFiLcAcBChDsAWIhwBwALEe4AYCHCHQAs9H8m7mE+Kik8RQAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x112268050>" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Percen within .2, confidence > .5 : NONE\n" | |
} | |
], | |
"prompt_number": 53 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment