From David Robinson:
<script async src="//platform.twitter.com/widgets.js" charset="utf-8"></script>A tidyverse approach to ROC curves #rstats pic.twitter.com/buizc7U9ns
— David Robinson (@drob) November 29, 2016
library(tidyverse)
theme_set(theme_minimal())
roc<- iris %>%
gather(Metric, Value, -Species) %>%
mutate(Positive = Species == "virginica") %>%
group_by(Metric) %>%
arrange(-Value) %>%
mutate(TPR = cumsum(Positive) / sum(Positive),
FPR = cumsum(!Positive) / sum(!Positive))
ggplot(roc, aes(FPR, TPR, color = Metric)) +
geom_line() +
geom_abline(lty = 2) +
ggtitle("ROC at predicting Virginica iris species")