import sympy
import numpy
import scipy
x,y,z = sympy.symbols("x, y, z")
system = [
sympy.Eq(3*x + 4*y, 7),
sympy.Eq(5*x + 6*y, 8)
]
a = [
[1,-1,-1,0],
[0,0,1,-1],
[1/2,3,0,0],
[0,3,-1,-2],
]
b = [
0,
60,
40,
0
]
# numpy.triu(a) # upper triangular form
# scipy.linalg.lu(a) #gives plu # l is lower triangulal
# sympy.Matrix(a).T.columnspace() # basis lines
# numpy.cross(a, b)
# numpy.dot(a, b)
numpy.linalg.solve(numpy.array(a), numpy.array(b))
# sympy.solve(system, [x, y]) # solve for x y
# sympy.integrate(x**2)
# sympy.diff(x**2)
# sympy.simplify((1/a)+(1/b))
# sympy.expand((1/(a+b)))
# ((a+b)/(a*b)).equals((1/a)+(1/b))
Last active
April 15, 2024 05:14
-
-
Save crbyxwpzfl/e6b8bf97e71b2204b4fda8f7fba4e058 to your computer and use it in GitHub Desktop.
some python math browser
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
run it in browser here