Created
January 31, 2020 15:13
-
-
Save creotiv/a0a9beb17692517b2cd44e5c9296a33d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchvision.datasets import MNIST | |
from torchvision import transforms | |
from torch.utils.data import DataLoader | |
class Model(Layer): | |
def __init__(self, lr=0.00001): | |
self.lr = lr | |
self.layers = [ | |
Linear(784,100, lr=self.lr), | |
Relu(), | |
Linear(100,200, lr=self.lr), | |
Relu(), | |
Linear(200,10, lr=self.lr) | |
] | |
def forward(self,x): | |
for l in self.layers: | |
x = l(x) | |
return x | |
def backward(self, grad): | |
for l in self.layers[::-1]: | |
grad = l.backward(grad) | |
return grad | |
simple = transforms.Compose([ | |
transforms.ToTensor(), # converts to [0,1] interval | |
]) | |
ds = MNIST('./mnist', download=True, transform=simple) | |
ld = DataLoader(ds, batch_size=2, pin_memory=True, drop_last=True) | |
mm = Model() | |
loss = SoftmaxCrossentropyWithLogits() | |
_loss_avg = 0 | |
for e in range(5): | |
for i, (img, label) in enumerate(ld): | |
x = img.view(2,-1).numpy() | |
res = mm(x) | |
_loss = loss(res, label.numpy()) | |
_loss_avg += _loss.mean() # running loss mean | |
grad = loss.backward(1) | |
mm.backward(grad) | |
if i % 100 == 0: | |
print(_loss_avg/100) | |
_loss_avg = 0 | |
print('---------') | |
for i in range(10): | |
img, target = ds[i] | |
plt.imshow(img[0]) | |
plt.show() | |
x = img.view(1,-1).numpy() | |
res = mm(x)[0] | |
pred = np.argmax(res) | |
print(f'target: {target} predicted: {pred}' ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment