Created
June 4, 2018 15:27
-
-
Save cristianexer/f5f64d113f24457dae84becbabe87f85 to your computer and use it in GitHub Desktop.
Titanic: Machine Learning from Disaster with brain.js
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
const brain = require('brain.js'); | |
var ezcsv = require('ezcsv'); | |
const trainPath = './train.csv'; | |
const testPath = './test.csv'; | |
const gp = './gpinr.csv'; | |
var train = ezcsv.csv.read(trainPath); | |
var test = ezcsv.csv.read(testPath); | |
var gpinr = ezcsv.csv.read(gp); | |
var headerTrain = ['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']; | |
var headerTest = ['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']; | |
function encode(arg) { | |
if (typeof arg == "number") | |
return arg; | |
else | |
return arg.split('').map(x => (x.charCodeAt(0) / 255)); | |
} | |
function normalization(val) { | |
var lres; | |
if (val > 1 && val < 9) { | |
lres = (val / 10); | |
} | |
if (val > 9 && val < 99) { | |
lres = (val / 100); | |
} | |
if (val > 99 && val < 999) { | |
lres = (val / 1000); | |
} | |
if (val > 999 && val < 9999) { | |
lres = (val / 10000); | |
} | |
if (val > 9999 && val < 99999) { | |
lres = (val / 100000); | |
} | |
if (val > 99999 && val < 999999) { | |
lres = (val / 1000000); | |
} | |
if (val > 999999 && val < 9999999) { | |
lres = (val / 10000000); | |
} | |
if (lres == null || lres === undefined) { | |
return 0; | |
} | |
return lres; | |
} | |
function checkNan(val) { | |
return isNaN(val) ? 0 : normalization(val); | |
} | |
function strEmpty(val) { | |
return (val == '') ? 0 : encode(val)[0]; | |
} | |
const brainForm = (input) => { | |
let temp = { | |
input: {}, | |
output: {} | |
}; | |
//console.log(input); | |
// temp.input[headerTrain[0]] = parseInt(input.PassengerId); | |
temp.input[headerTrain[2]] = checkNan(parseInt(input.Pclass)); | |
//temp.input[headerTrain[3]] = encode(input.Name); | |
//temp.input[headerTrain[4]] = encode(input.Sex); | |
// temp.input[headerTrain[5]] = parseInt(input.Age); | |
temp.input[headerTrain[6]] = checkNan(parseInt(input.SibSp)); | |
temp.input[headerTrain[7]] = checkNan(parseInt(input.Parch)); | |
temp.input[headerTrain[8]] = checkNan(parseInt(input.Ticket)); | |
temp.input[headerTrain[9]] = checkNan(parseFloat(input.Fare)); | |
temp.input[headerTrain[10]] = normalization(parseFloat(input.Cabin)); | |
temp.input[headerTrain[11]] = strEmpty(input.Embarked); | |
temp.output['Survived'] = parseInt(input.Survived); | |
return temp; | |
} | |
const testForm = input => { | |
let temp = { | |
}; | |
//temp[headerTrain[0]] = parseInt(input.PassengerId); | |
temp[headerTest[1]] = checkNan(parseInt(input.Pclass)); | |
//temp[headerTest[2]] = encode(input.Name); | |
//temp[headerTest[3]] = encode(input.Sex); | |
//temp[headerTest[4]] = parseInt(input.Age); | |
temp[headerTest[5]] = checkNan(parseInt(input.SibSp)); | |
temp[headerTest[6]] = checkNan(parseInt(input.Parch)); | |
temp[headerTest[7]] = checkNan(parseInt(input.Ticket)); | |
temp[headerTest[8]] = checkNan(parseFloat(input.Fare)); | |
temp[headerTest[9]] = normalization(parseFloat(input.Cabin)); | |
temp[headerTest[10]] = strEmpty(input.Embarked); | |
return temp; | |
} | |
let brainData = []; | |
train.items.map((res, key) => { | |
brainData.push(brainForm(res)); | |
}); | |
var config = { | |
iterations: 5000, | |
log: true, | |
logPeriod: 500, | |
errorThresh: 0.003, | |
hiddenLayers: [3, 3], | |
learningRate: 0.3, | |
activation: 'sigmoid' | |
} | |
var net = new brain.NeuralNetwork(config); | |
net.train(brainData); | |
let lastPassengerId = parseInt(train.items[train.items.length - 1].PassengerId) + 1; | |
let results = []; | |
test.items.map((res, key) => { | |
let temp = { | |
PassengerId: lastPassengerId + key, | |
Survived: Math.round(net.run(testForm(res)).Survived) | |
}; | |
results.push(temp); | |
}); | |
var matches = 0; | |
for (let i = 0; i < results.length; i++) { | |
if (results[i].PassengerId == parseInt(gpinr.items[i].PassengerId) && results[i].Survived == parseInt(gpinr.items[i].Survived)) | |
matches++; | |
} | |
console.log(`Score: ${matches}/${results.length}`); | |
var submission = ezcsv.csv.write( | |
'titanicSubmission.csv', { | |
header: ['PassengerId', 'Survived'], | |
items: results | |
} | |
); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment