Created
January 11, 2012 04:50
-
-
Save crmccreary/1593090 to your computer and use it in GitHub Desktop.
Computing Euler angles from a rotation matrix
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as NP | |
import math | |
def isclose(x, y, rtol=1.e-5, atol=1.e-8): | |
return abs(x-y) <= atol + rtol * abs(y) | |
def euler_angles_from_rotation_matrix(R): | |
''' | |
From a paper by Gregory G. Slabaugh (undated), | |
"Computing Euler angles from a rotation matrix | |
''' | |
phi = 0.0 | |
if isclose(R[2,0],-1.0): | |
theta = math.pi/2.0 | |
psi = math.atan2(R[0,1],R[0,2]) | |
elif isclose(R[2,0],1.0): | |
theta = -math.pi/2.0 | |
psi = math.atan2(-R[0,1],-R[0,2]) | |
else: | |
theta = -math.asin(R[2,0]) | |
cos_theta = math.cos(theta) | |
psi = math.atan2(R[2,1]/cos_theta, R[2,2]/cos_theta) | |
phi = math.atan2(R[1,0]/cos_theta, R[0,0]/cos_theta) | |
return psi, theta, phi | |
if __name__ == '__main__': | |
import unittest | |
import random | |
class Test(unittest.TestCase): | |
def test1(self): | |
R = NP.array([[0.5,-0.1464, 0.8536], | |
[0.5, 0.8536, -0.1464], | |
[-math.sqrt(2)/2.0,0.5,0.5]]) | |
psi, theta, phi = euler_angles_from_rotation_matrix(R) | |
self.assertTrue(isclose(theta, math.pi/4.0)) | |
self.assertTrue(isclose(psi, math.pi/4.0)) | |
self.assertTrue(isclose(phi, math.pi/4.0)) | |
def test2(self): | |
R = NP.array([[0.5,-0.1464, 0.8536], | |
[0.5, 0.8536, -0.1464], | |
[-1.0,0.5,0.5]]) | |
psi, theta, phi = euler_angles_from_rotation_matrix(R) | |
self.assertTrue(isclose(theta, math.pi/2.0)) | |
self.assertTrue(isclose(psi, -0.16985631158231004)) | |
self.assertTrue(isclose(phi, 0.0)) | |
def test3(self): | |
R = NP.array([[0.5,-0.1464, 0.8536], | |
[0.5, 0.8536, -0.1464], | |
[1.0,0.5,0.5]]) | |
psi, theta, phi = euler_angles_from_rotation_matrix(R) | |
self.assertTrue(isclose(theta, -math.pi/2.0)) | |
self.assertTrue(isclose(psi, 2.971736342007483)) | |
self.assertTrue(isclose(phi, 0.0)) | |
def test4(self): | |
# A little fuzzing | |
rand = random.uniform | |
for i in range(10000): | |
R = NP.array([[rand(-1.,1.),rand(-1.,1.),rand(-1.,1.)], | |
[rand(-1.,1.),rand(-1.,1.),rand(-1.,1.)], | |
[rand(-1.,1.),rand(-1.,1.),rand(-1.,1.)]]) | |
psi, theta, phi = euler_angles_from_rotation_matrix(R) | |
def suite(): | |
suite1 = unittest.makeSuite(Test) | |
return unittest.TestSuite([suite1]) | |
suite = unittest.TestLoader().loadTestsFromTestCase(Test) | |
unittest.TextTestRunner().run(suite) |
If you refer the paper, (psi,theta,phi) refers to (theta_x, theta_y, theta_z).
I guess if one follows convention, then (theta_x=roll, theta_y=pitch, theta_z=yaw)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How psi, theta, phi corresponds to yaw, pitch, roll?