Skip to content

Instantly share code, notes, and snippets.

@crowsonkb
Created February 23, 2019 06:07
Show Gist options
  • Save crowsonkb/5fb831d55f248c8c7d943615775e1ee9 to your computer and use it in GitHub Desktop.
Save crowsonkb/5fb831d55f248c8c7d943615775e1ee9 to your computer and use it in GitHub Desktop.
name: "thing"
layer {
name: "data"
type: "Data"
top: "big_data"
top: "label"
include { phase: TRAIN }
transform_param {
mean_value: 103.939
mean_value: 116.779
mean_value: 123.68
force_color: true
}
data_param {
source: "data_set/train_lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "big_data"
top: "label"
include { phase: TEST }
transform_param {
mean_value: 103.939
mean_value: 116.779
mean_value: 123.68
force_color: true
}
data_param {
source: "data_set/val_lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "data_scale_down"
type: "Pooling"
bottom: "big_data"
top: "data"
pooling_param {
pool: AVE
kernel_size: 2
stride: 2
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
convolution_param {
num_output: 365
kernel_size: 1
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
convolution_param {
num_output: 365
kernel_size: 1
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
convolution_param {
num_output: 365
kernel_size: 1
weight_filler { type: "xavier" }
bias_filler { type: "xavier" }
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "pool5"
bottom: "label"
top: "loss/loss"
}
layer {
name: "accuracy/top1"
type: "Accuracy"
bottom: "pool5"
bottom: "label"
top: "accuracy@1"
include: { phase: TEST }
accuracy_param { top_k: 1 }
}
layer {
name: "accuracy/top5"
type: "Accuracy"
bottom: "pool5"
bottom: "label"
top: "accuracy@5"
include: { phase: TEST }
accuracy_param { top_k: 5 }
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment