Created
February 23, 2019 06:07
-
-
Save crowsonkb/5fb831d55f248c8c7d943615775e1ee9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "thing" | |
layer { | |
name: "data" | |
type: "Data" | |
top: "big_data" | |
top: "label" | |
include { phase: TRAIN } | |
transform_param { | |
mean_value: 103.939 | |
mean_value: 116.779 | |
mean_value: 123.68 | |
force_color: true | |
} | |
data_param { | |
source: "data_set/train_lmdb" | |
batch_size: 128 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "Data" | |
top: "big_data" | |
top: "label" | |
include { phase: TEST } | |
transform_param { | |
mean_value: 103.939 | |
mean_value: 116.779 | |
mean_value: 123.68 | |
force_color: true | |
} | |
data_param { | |
source: "data_set/val_lmdb" | |
batch_size: 128 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data_scale_down" | |
type: "Pooling" | |
bottom: "big_data" | |
top: "data" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
convolution_param { | |
num_output: 32 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
convolution_param { | |
num_output: 32 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
convolution_param { | |
num_output: 365 | |
kernel_size: 1 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
convolution_param { | |
num_output: 365 | |
kernel_size: 1 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
convolution_param { | |
num_output: 365 | |
kernel_size: 1 | |
weight_filler { type: "xavier" } | |
bias_filler { type: "xavier" } | |
} | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5_3" | |
top: "pool5" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "pool5" | |
bottom: "label" | |
top: "loss/loss" | |
} | |
layer { | |
name: "accuracy/top1" | |
type: "Accuracy" | |
bottom: "pool5" | |
bottom: "label" | |
top: "accuracy@1" | |
include: { phase: TEST } | |
accuracy_param { top_k: 1 } | |
} | |
layer { | |
name: "accuracy/top5" | |
type: "Accuracy" | |
bottom: "pool5" | |
bottom: "label" | |
top: "accuracy@5" | |
include: { phase: TEST } | |
accuracy_param { top_k: 5 } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment