Skip to content

Instantly share code, notes, and snippets.

@crtradeworks
Created June 25, 2015 15:20
Show Gist options
  • Save crtradeworks/788ab8ee69abec47863c to your computer and use it in GitHub Desktop.
Save crtradeworks/788ab8ee69abec47863c to your computer and use it in GitHub Desktop.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"raw_mimetype": "text/html",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# This program is to implement a function _FX_Volatility()_ to get volatility for Trading Symbol Selection.\n",
"\n",
"###Data source here is the MT4 exported csv file with trading time, Open, High, Low, Close and volume. For production, the data source could be from database.\n",
"\n",
"###All the language is in Python.\n",
"\n",
"\n",
"# "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### The following is the 1st Input box, only for IPython Notebook, to show plot/chart inside the console"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#####The 2nd Input box is for importing data from CSV files.\n",
"Here only uses EURUSD and USDJPY as example, could be extended to all kinds of Forex symbols."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[['2004.10.20', '18:00', '1.26240', '1.26310', '1.25900', '1.26000', '472'],\n",
" ['2004.10.20', '19:00', '1.26000', '1.26070', '1.25820', '1.25870', '411'],\n",
" ['2004.10.20', '20:00', '1.25890', '1.25970', '1.25830', '1.25870', '362'],\n",
" ['2004.10.20', '21:00', '1.25880', '1.25930', '1.25710', '1.25830', '392'],\n",
" ['2004.10.20', '22:00', '1.25830', '1.25920', '1.25760', '1.25870', '338'],\n",
" ['2004.10.20', '23:00', '1.25870', '1.25920', '1.25760', '1.25830', '301'],\n",
" ['2004.10.21', '00:00', '1.25810', '1.25860', '1.25710', '1.25760', '347'],\n",
" ['2004.10.21', '01:00', '1.25760', '1.25830', '1.25720', '1.25800', '287'],\n",
" ['2004.10.21', '02:00', '1.25810', '1.25910', '1.25780', '1.25850', '340'],\n",
" ['2004.10.21', '03:00', '1.25870', '1.25950', '1.25780', '1.25910', '370']]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\"\"\"\n",
"Volatility with EWMA model, Python\n",
"\"\"\"\n",
"\n",
"# Import some Python standard libraries\n",
"import csv\n",
"import math\n",
"from datetime import datetime\n",
"\n",
"# Import data from csv files, read data\n",
"EURUSDreader = csv.reader(open('EURUSD.csv'))\n",
"USDJPYreader = csv.reader(open('USDJPY.csv'))\n",
"\n",
"EURUSD = []\n",
"for line in EURUSDreader:\n",
"\tEURUSD.append(line)\n",
"\n",
"USDJPY = []\n",
"for line in USDJPYreader:\n",
"\tUSDJPY.append(line)\n",
"\n",
"# Show some details about EURUSD\n",
"EURUSD[0:10]\n",
"# The following Output box, you will see: Time, Clock, Open_price, High_price, Low_price, Close_price and Trading_Volume."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#####The 3rd Input is for data preparation, to get time data series (EURUSD_Time, USDJPY_Time) and Close price data series (EURUSD_Close, USDJPY_Close)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[datetime.datetime(2004, 10, 20, 18, 0),\n",
" datetime.datetime(2004, 10, 20, 19, 0),\n",
" datetime.datetime(2004, 10, 20, 20, 0),\n",
" datetime.datetime(2004, 10, 20, 21, 0),\n",
" datetime.datetime(2004, 10, 20, 22, 0),\n",
" datetime.datetime(2004, 10, 20, 23, 0),\n",
" datetime.datetime(2004, 10, 21, 0, 0),\n",
" datetime.datetime(2004, 10, 21, 1, 0),\n",
" datetime.datetime(2004, 10, 21, 2, 0),\n",
" datetime.datetime(2004, 10, 21, 3, 0)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Time data processing\n",
"EURUSD_Time = []\n",
"for row in EURUSD:\n",
"\tEURUSD_Time.append(datetime.strptime((row[0] + \" \" + row[1]), \"%Y.%m.%d %H:%M\"))\n",
"\n",
"USDJPY_Time = []\n",
"for row in USDJPY:\n",
"\tUSDJPY_Time.append(datetime.strptime((row[0] + \" \" + row[1]), \"%Y.%m.%d %H:%M\"))\n",
"\n",
"# Close_price data processing\\\n",
"EURUSD_Close = []\t\n",
"for row in EURUSD:\n",
"\tEURUSD_Close.append(float(row[5]))\n",
"\n",
"USDJPY_Close = []\t\n",
"for row in USDJPY:\n",
"\tUSDJPY_Close.append(float(row[5]))\n",
" \n",
"EURUSD_Time[0:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### For production, Input box [1], [2], [3] should be changed. For example, from database."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#####4th, we calculate the Return series of the Forex\n",
"Use Close_price series to calculate **Return series** of the Forex. The volatility calculation is based on Return data series.\n",
"\n",
"To calculate Return series data:\n",
"- create an empty list \"EURUSD_Return\"\n",
"- loop through EURUSD_Close, each Return is calculated from two agjacent Close_price, formula:\n",
"\n",
"###$$Return_i = log_e(Close_{i+1}) - log_e(Close_i)$$\n",
"\n",
"- append each Return item into the list EURUSD_Return.\n",
"\n",
"Java logarithm calculation reference: \n",
"_static double log(double a)_\n",
"http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html (search \"natural logarithm\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Rate of return calculation, using EURUSD as an example\n",
"EURUSD_Return = []\n",
"\n",
"for index in (range(len(EURUSD_Close) - 1)):\n",
"\ttemp = math.log(EURUSD_Close[index + 1]) - math.log(EURUSD_Close[index])\n",
"\tEURUSD_Return.append(temp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###Finally, implement the _FX_Volatility()_ function \n",
"\n",
"#####Use EWMA model to calculate volatility, to show users the latest volatility condition of the Forex product.\n",
"\n",
"EWMA model:\n",
"###$$\\sigma_n^2 = \\lambda\\sigma_{n-1}^2 + (1 - \\lambda)u_{n-1}^2$$\n",
"\n",
"- $\\sigma_n$: volatility at day n \n",
"- $u_{n - 1}$: daily percentage change in the variable\n",
"- $\\lambda$: the parameter to decide weights, 0 < $\\lambda$ < 1\n",
"\n",
"\n",
"Reference:\n",
"- $\\lambda$ choice: http://www.investopedia.com/articles/07/ewma.asp\n",
"- EWMA model for Python Pandas\n",
"http://pandas.pydata.org/pandas-docs/dev/generated/pandas.stats.moments.ewma.html\n",
"- EWMA model for Java reference:\n",
"\n",
"https://github.com/dropwizard/metrics/blob/master/metrics-core/src/main/java/com/codahale/metrics/EWMA.java\n",
"http://grepcode.com/file/repo1.maven.org/maven2/com.codahale.metrics/metrics-core/3.0.1/com/codahale/metrics/EWMA.java"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Volatility using Exponetial Weighted Moving Average model, with the \"Pandas\" package\n",
"import pandas # Import a 3rd party package \"Pandas\"\n",
"\n",
"\n",
"# Function of EWMA Volatility - FX_Volatility()\n",
"def FX_Volatility(FX_Close_raw, FX_Time, starting_time, ending_time):\n",
"\t\"\"\"\n",
"\tFor production:\n",
" users should choose only starting_time and the name of FX symbol, \n",
"\tthe ending_time should always be the latest time in our market database,\n",
"\tand we do the data processing(to generate FX_Close_raw and FX_Time) for users.\n",
"\n",
"\t4 input data:\n",
"\t1-dimension array/list/vector of FX_Close_price series\n",
"\t1-dimension array/list/vector of FX_Time series\n",
"\ta time data of starting_time\n",
"\ta time data of ending_time\n",
"\t\"\"\"\n",
"\t\n",
"\t# Get the Close_price data within a period from starting_time to ending_time\n",
"\tindex_1 = FX_Time.index(starting_time)\n",
"\tindex_2 = FX_Time.index(ending_time) + 1\n",
"\tFX_Close = FX_Close_raw[index_1 : index_2]\n",
"\n",
"\t# Get the Return_series of the FX symbol\n",
"\tFX_Return = []\n",
"\n",
"\tfor index in (range(len(FX_Close) - 1)):\n",
"\t\ttemp = math.log(FX_Close[index + 1]) - math.log(FX_Close[index])\n",
"\t\tFX_Return.append(temp)\n",
"\n",
"\t# Use the built-in function in the Pandas package to calculate volatility series\n",
"\tFX_ReturnSeries = pandas.Series(FX_Return)\n",
"\tEWMA_Volatility = pandas.stats.moments.ewma(FX_ReturnSeries, (1/0.94-1))\n",
" \n",
"\t# The returned value is the last value of the volatility series\n",
"\treturn EWMA_Volatility[len(EWMA_Volatility)-1]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#####The last box: we show some example here to call the function and see the output."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.000337875882614\n",
"0.000665365109227\n"
]
}
],
"source": [
"# Some examples to call the function\n",
"Volatility_example_1 = FX_Volatility(EURUSD_Close, EURUSD_Time, datetime(2014, 01, 01, 23, 0), datetime(2015, 04, 01, 07, 0))\n",
"print Volatility_example_1\n",
"\n",
"Volatility_example_2 = FX_Volatility(USDJPY_Close, USDJPY_Time, datetime(2014, 01, 01, 23, 0), datetime(2015, 04, 23, 23, 0))\n",
"print Volatility_example_2"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Function of EWMA Volatility - FX_Volatility()\n",
"def FX_Volatility_2(FX_Close_raw, FX_Time, starting_time, ending_time):\n",
"\t\"\"\"\n",
"\tFor production:\n",
" users should choose only starting_time and the name of FX symbol, \n",
"\tthe ending_time should always be the latest time in our market database,\n",
"\tand we do the data processing(to generate FX_Close_raw and FX_Time) for users.\n",
"\n",
"\t4 input data:\n",
"\t1-dimension array/list/vector of FX_Close_price series\n",
"\t1-dimension array/list/vector of FX_Time series\n",
"\ta time data of starting_time\n",
"\ta time data of ending_time\n",
"\t\"\"\"\n",
"\t\n",
"\t# Get the Close_price data within a period from starting_time to ending_time\n",
"\tindex_1 = FX_Time.index(starting_time)\n",
"\tindex_2 = FX_Time.index(ending_time) + 1\n",
"\tFX_Close = FX_Close_raw[index_1 : index_2]\n",
"\n",
"\t# Get the Return_series of the FX symbol\n",
"\tFX_Return = []\n",
"\n",
"\tfor index in (range(len(FX_Close) - 1)):\n",
"\t\ttemp = math.log(FX_Close[index + 1]) - math.log(FX_Close[index])\n",
"\t\tFX_Return.append(temp)\n",
"\n",
" # Calculate EWMA model and get the volatility\n",
"\tLAMBDA = 0.94\n",
"\tVolatility = []\n",
"\tVolatility.append(FX_Return[0])\n",
"\n",
"\tfor i in range(len(FX_Return)):\n",
"\t\ttemp_Volatility = math.sqrt(LAMBDA * Volatility[i] ** 2 + (1 - LAMBDA) * FX_Return[i] ** 2)\n",
"\t\tVolatility.append(temp_Volatility)\n",
"\n",
"\t# The returned value is the last value of the volatility series\n",
"\treturn [Volatility[len(Volatility) - 1]]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.0011404647627206502]\n",
"[0.0007958705970447617]\n"
]
}
],
"source": [
"# Some examples to call the function\n",
"Volatility_example_1 = FX_Volatility_2(EURUSD_Close, EURUSD_Time, datetime(2014, 01, 01, 23, 0), datetime(2015, 04, 01, 07, 0))\n",
"print Volatility_example_1\n",
"\n",
"Volatility_example_2 = FX_Volatility_2(USDJPY_Close, USDJPY_Time, datetime(2014, 01, 01, 23, 0), datetime(2015, 04, 23, 23, 0))\n",
"print Volatility_example_2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment