Skip to content

Instantly share code, notes, and snippets.

@crtradeworks
Last active August 29, 2015 14:22
Show Gist options
  • Save crtradeworks/8784b4c46ab31e4b04a9 to your computer and use it in GitHub Desktop.
Save crtradeworks/8784b4c46ab31e4b04a9 to your computer and use it in GitHub Desktop.
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.00128620478494\n"
]
}
],
"source": [
"%matplotlib inline\n",
"import csv\n",
"import math\n",
"import numpy\n",
"\n",
"# Import data from csv files\n",
"EURUSDreader = csv.reader(open('EURUSD.csv'))\n",
"\n",
"EURUSD = []\n",
"for line in EURUSDreader:\n",
"\tEURUSD.append(line)\n",
"\n",
"# Data processing\n",
"EURUSD_Open = []\n",
"for row in EURUSD:\n",
"\tEURUSD_Open.append(float(row[2]))\n",
"\n",
"EURUSD_High = []\n",
"for row in EURUSD:\n",
"\tEURUSD_High.append(float(row[3]))\n",
"\n",
"EURUSD_Low = []\n",
"for row in EURUSD:\n",
"\tEURUSD_Low.append(float(row[4]))\n",
"\n",
"EURUSD_Close = []\t\n",
"for row in EURUSD:\n",
"\tEURUSD_Close.append(float(row[5]))\n",
"\n",
"EURUSD_Volume = []\n",
"for row in EURUSD:\n",
"\tEURUSD_Volume.append(float(row[6]))\n",
"\n",
"EURUSD_Return = []\n",
"for index in (range(len(EURUSD_Close) - 1)):\n",
"\ttemp = math.log(EURUSD_Close[index + 1]) - math.log(EURUSD_Close[index])\n",
"\tEURUSD_Return.append(temp)\n",
"\n",
"sd_EURUSD = numpy.std(EURUSD_Return)\t\n",
"\n",
"\n",
"print sd_EURUSD"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEACAYAAABPiSrXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm45ES5x/FvmGEdZJ8RUFkERRSR3YXFg2wCXlzRUUEQ\nBTcQUVFRlEHUe1FEfbiIykUW9So6goosIsuRuYKCIDCgM4DMuIIMICAoDMPU/aOSc6rTWSqdpJP0\n+X2ep5+TTlcn7+lO500qVRUQERERERERERERERERERERERERERGRmu0HzAcWAMcVLDM7nP974GZg\n5/rCFBGRps0AFgOzgGnANcC2BcpsB6weTu8FXF1rtCIiUsoKJd+/E3ATcB/wFDAXe1bhW+Ym4NFw\n+jnArSXjERGRGk0v+f4NsckgsgS78y9SZi3gNuAh4BUl4xERkRqVPdMw2LMH10oFyzwEPBP4IHB+\nyXhERKRGZc807gVmOs9nAfcMUAbgCpKTxl3AZiViFBGZiv4AbN50EHGrA4uwSWE69iL3rsAawEY5\nZQAOAFYLp98AXJWwDlNH4EM0p+kASprTdAAlzWk6gJLmNB1ACXOaDqCkOU0HUFIt+86y1VOPAkdi\nWz3dDlwOzANeB5ybUwZsK6rbgIXAe4B3loxHRERqVLZ6CuDi8OE6J3xklQE4MXyIiEgHlD3TkHzj\nTQdQ0njTAZQ03nQAJY03HUAJ400HUNJ40wHIYLp+TUNEpAmtvKYhIiJTiJKGiIh4U9IQERFvShoi\nIuJNSUNERLwpaYiIiDclDRER8aakISIi3pQ0RETEm5KGiIh4U9IQERFvShoiIuJNSUNERLwpaYiI\niDclDRGRoTN7gDmi6SgGoaQhIjJ8mwE7NB3EIJQ0RETEm5KGiIh4U9IQERFvShoiIuJNSUNERLwp\naYiIiDclDRER8aakISIi3pQ0RETEm5KGdITZoOkIRERJQ7rjb2B2aToIkalOSUO6ZM2mAxCZ6pQ0\nRETEm5KGiIh4U9IQERFvShoiIuJNSUNERLwpaYiIiLcqksZ+wHxgAXBcwTIfBu4Efg9cAqxXQTwi\nItJSM4DFwCxgGnANsG2BMrsDq4TTxwGnJqzDVBmwdJUxYPZvOgqRapgjwHyj7pXUsdCyZxo7ATcB\n9wFPAXOxZxW+Za4GHg+nbwPWLxmPiIjUqGzS2BCbDCJL6N/x+5QBOAi4omQ8IiJSo+kl32+wZw+u\nlQYo815gbeDslPXMcabHw4eIiEwaCx+1Kps07gVmOs9nAfcULPM24K3AK0mvg5tTKkoRkdE3Tu8B\n9QnNhJFtdWARNilMx17k3hVYA9gopwzAEcA8sgei04VwQRfCZbR090J42TONR4EjsRe0VwS+hU0C\nhwKHYFtHpZUB22LKAL8Knxvg+SVjEhGRKUxnGoLONGS0dPdMQz3CRUTEm5KGiIh4U9IQERFvShoi\nIuJNSUNERLwpaYiIiDclDRER8aakISIi3pQ0RETEm5KGiIh4U9IQERFvShoiIuJNSUNERLwpaYhM\nCWZFMEHTUUj3KWmITA1LgWOaDkK6T0lDGmB2A3N801FMQVs2HYB0n5KGNOE44KSmgxCR4pQ0RETE\nm5KGiIh4U9IQERFvShoiIuJNSUNawOwHZo2moxCRfEoa0gYXA+8D8xEw0zPKqXOaSMOUNKRNTgae\n1XQQIpJOSUNERLwpaYiIiDclDWkbXbcQaTElDWkL03QAIpJPSUMaZtZqOgIR8aekIU37R9MBFGN2\nBHNa01GINEVJQ9qm7dc0DgOObDoIkaYoaYiIiDclDWkLbYuSwRh7y1ppmn6o0hYzmg5AWm+lpgMQ\nJQ1pn7Zf0xCZ0qpIGvsB84EF2Nt4Fi0zA/glsH0FsYiISI3KJo0ZwFeBPYAXAPsC2xYo81LgTmAH\nRr5zlzkXzBuajqLFRvz7FxkNZZPGTsBNwH3AU8Bc7FmFb5nrgA2Ba0vG0QVvA97RdBAt1pWkoeoz\nmdLKJo0NsckgsgRYf4AyMrWEO16TlCi0UxZpsbJJw2DPHlzxFg4+ZURSqJmlpDEbg3l701FMNVl3\nSfNxLzDTeT4LuGeAMnnmONPj4aOLdBRtFamKWgpm69oi8WL2wG7H04B3NRvLlBb//XwEeC9wdgOx\ntNFY+Gi11YFF2KQwHbgG2BVYA9gop4zratJbT3WlrjuHMWAuazqKdjCXhp+H+zgp/DsXzDudssbu\ntI0B86qG4jVg5oM5azLerjEGzJkl3v9GMA0e9BgDZvXYvNO7+V0AmCPAfKPuldSx0LLVU49ix+G5\nGrgduByYB7wOODenDMCOwA3AdsB5wOdLxiPdFW3grye96bY053xglYZj6GiCGC1lq6cALg4frnPC\nR1YZsAljxwpikE4wRwNfBnTGJVOQeS2wAgQ/bDqSMqpIGuJvql/TGGs6AJEGXRD+7fR+QMOIyDC9\nIOO1rB9SG35khtZWj5g1hrWiIa1HWkxJQ4bJd6eTVi7WWMKs0NzF2byL8mZtMAcNJxYets1Pa9eG\n5N0xJj5CBmC2Gn4c1VHSqIX5LZhnNx1FCz034zWfhPKK2POngDcNHk7P6rcr+IZ4C8C4w4BvDRjM\nIFbPL9J5HUtaZnPsaBhx84cdSZWUNOqxDRMX+M329ogY6NxGP1Sf7H1qfK+3bVF+1WYV4Ma8QuXX\n48O3M6OZaQ9O+ubfCKauERfCz8BsCOb2mtZRRNt/T2s1HUAdlDTq9xvsYI0jxGxbc3XIZsCTzvNo\n51DXSAKD7Hyc95hXg9k99vqgSWYpmOd7lHsesE3YIs21HdnXjqrwQsAnxqnuhqYDqINaT9XH3WkM\nsLMz6wCPQ/CvqgKq0E3YPjfDrpt9yZDX5+tHwP30jnxQRpHlfDlhXtuPwKXDdKYxHIMcdT4AfL/q\nQCqkHVMfc7fTkmkUWxqNgTmH0v+b2XnABgwt/0zN6lNhrDQljfqYhOmiP5RNqgmldV7pV8zsMNji\nzcY1tKqKN7lNWv6mwMnh9Kkpi9mzpqEvVgSzcg3LdR0SPsr6P+y9dEbNP4H/bjqIuilpNMK8Ra2r\nvAxaJ7wYqHucqg1S5r88531VXLhfk/4qzx8Dvwun6z4LrCLpDblq3KwE5sghrGjzhHUHzY7bVS0l\njfoknWlEvkNfa6FELdnQzIyGA/hwxmtPS5m/RjjQYV0X7N+aMn8YVSgP0X9EuxEQHYhMB7NqDes1\nsb9llGx8UDiO7YHTBlhnFe4C/qehdVdOSaM+7gad0MHHSwuShtkYO+hkk/bOeO1DGa9dgb3VMGA2\nqbn6Ztj17ZtmvHYakNSAouz2VOX/2PC2bQ4H8/EhrezZwMti89Yd0rorp6QxHJ8L/64KZmF1izWB\n0wek6Hv3ya4iMyuHA6wNa4iKEjKvEUQ7p0X4nd2lriTn9Wg9sXLx4bw5qkQMvjbzL2pWBvP6nDLR\n//aWaMYgQcUMO2nEY/4c8Nkhrj9+gfxziaU6QEljuNYju1d0XN4P6yP03xXR12XA6Rmvvwo7wJrn\nDsLsNWAcw7R2A+t0Loibvem7pmGM7SzXmP2AuQXfM62OQAZQJPHEt+OSScusHPb49tWCWoNqdDhp\nmHWLX0w2+4IJh38wGX0nzDvt8huXt6Ft0+C6nc5dZi3sfVKGwHy64Buq/LFmJdC0+n73msvPUt5b\n03UXs0F4AfjpFS94wM/UXAJmrNwyerynxHvLrv+jwJ1gnpW8XLN/xetrjQ4nDS4E/mAnvW8HegmT\nwxM/AWY85WjhTODgcNnbgUlpPukyAZgt3RlJhZzpNcHMSygTf8u1YJ6RX642FdVjm6o65u0WLu/J\n7GITav6xTgx3kraeF2e8N7rpWMJ7zSfAfKlEYAB/w94q+d7wudNiyawB5gzgGI/lxLe/tySWyrcv\n9gZt0Pc/GwPmmfmLMDMGbLJc8ZkGa4Z/01pk/dRjGYeXjKERXU4aazrTtyR3qjG7gkk7ugPbPPLV\nKa9FG9WN9PywzCEkj4u0E5NNHtO4G+7mwC455QNse/aig+n52tnjB7he+kvmvjChLY/NT7rgPGhj\ngLjoexmkyWbZBJi0o8kbsyrlgrVZDzg2Y7kfBj4Qe88+zhPfi/pu0+A3OtN7Ae8mf+BFgD/Hnr8t\njGeQwSKjazpJ//PmYbVP+L+ZdWKvG1LvHmg2yVlv1Umj5R0N69OxpGGmhfXCaa8/ELZhj7yG/pY3\nCTtBczKY78Rmpp1dnEPy2D7xjTnvTCOadXDKeqC2o2Tz9nAirbmqazzjtZnYazTRQHYGzKeAxxPK\nVvW/pCzH3FGsfBXMW4HoLDejOao5Dkz8s85LNvFE/EzgsgGufxzqTIe/d7MXidcxzLZgflFg2d/z\nL9pXG5D0vayI3XZuCaueHygQyyKyB2qseifvLM/skLH9jZwOJQ2zN/Ax0uuFXwisA6wfVhVlHImZ\n8diMt1PslDt+ar0afoPEJW24TfSM/aJHmdWSZ5vzEma6O7is5rFVCBLqiwGeE3tex/2s3xl7/m3P\n932O/rsWumcAUT34UmdefFuJtudxz3VmSdu57s1E9d9EGB77CLMlmJeTeO+ICVfGnqclDbCNBZIO\naPIOADyG8DBBWCtR1ZnG1tge7vHtL07XNBrwM+AzdtIYJo7wJpoDul/aEdgjlrSji3iv3eWJpfwd\nT39LpLwzDZ+WPJ4bWuGjT5/lnpsyP35m9FZ6hzsJq2NMOLKvWdXWn1f2o9kFmJ38krnQefKV8G88\nwa/NRGfFtAMLMw3Md2MzfVsMpW1z8abLSTs4d158OdHzvJ1TlrzOeUnzc6qvzDRstew4yfeOSJO0\nPbiNUwqcGZgX+hQK/x4DLE1ZfxHR8nbDr6pQSaNFoi/jdc68qFmjT+uiACjbusTpMT3RKuvChHLu\nDyG66Je1Mfl+P9d6lovExvmPqvTMc7NP8ROrBt8BfMJ5HiWwK8JrPz/B1olX+aNJ+15f40xH34m7\nXgP8BbgYzIuZrEa7Lrac1elPTD47pixZZyVJn038QGbfkuv3kbSjzrt2tGzAdSUNw5KXNNam/2wP\n4Nbwb9Y2Fi0vGpm5bP+jtAQ8MskhTUeShslogTLxJbnVEdGF64rvYzFxi8/fgjnMfcGZdu6r0DeU\nQ9IPIQBzoD0C7uPbpNjn2kSW48FsCiwku9XHpQWXuxX286i6g2BGXxcTPyPYE8xZzvPVsGdD7tnZ\ni5z3nwHcVzbAguLVhQcDs2LzqhgIL6UD4oTPJ8yr64Lv2dhm8yc789z9UdJ6LwT+y38VZoXJs8qB\nBw0dQOI4UyOTTDqSNPhVxmvRl5Hzv6TeCe4LBeK4yJneMaXMZc60770wvg+8q0AcVVsBuDuc3t6j\nRVVc2g9iNvV0BMu6P0nSke9hsecbMdn0Ou7dOctP49wDw+xX8L070tvn6B0DrL+IIbf8SR0u/H5s\nB9Uk4S1Rjdv6zLnOZl5EIrOFc7Z/DP1D4FS180470xgj+bespNEi0ZeRN6qpR7t+E4DZOeW1fyav\n1xwIxO+elrqChHlB7G9JZveUI52yyz2A9O1lzZT5beggWYCJbUNmwQAL2Rq4eID3pbSiMycNkMTb\nZimZTbcnJG23h6aUvTlh3grAAibHI3P7YNXVeirp3uwnJcyLdwLsrFFIGlUeyT4H2xIiSXzjGAt/\nzNsXWH5FScNsA2aJM2Md56LuVfRUt/S9N20Hn+cVGa/51Le34Ugrb9iHi2LPtwBzZ13BeHpbhcuK\nzrZzdqDmVDBf8yvb995V6W9enPce34YcW+a8Ho0kG1u/eQGT/0fsLNLEBrw0HwSTUBVobgTjXofx\nGR1gJI1C0rgsv4i3H/U+NVnNNqMNqMgG4jGwnjkaTPz01m0TvjFwPf1Hbm7fCCeRmmNiO76kajqf\nHXrZH0KBQfRqk3Dzp9wmpUXGFypjTsr8jSpcx7SwuiepL4nb9PsYJqtY8jqgxl0O/LHge/5asHya\naCTZ+PZ8mzP95thrp4DZ2h4AmpdgO1S+L2HZ2zHZJ2dKG4WkEW8+e3yJZcWPZP6dUTa6uJt2bSNJ\n0o43GkrgM+F1ly8DX0soFzmAyaaZKU1Pe340e2J72u5FuQ5Ig7TecePwrcIbtgHvDthZd6fMT2iB\nZ94FFB3raxcGHxgyaX9U5F4uzll739nLJRnvi8ZRuw7/5vdZrcpG+kxjyHfPGoqD+meZrfrnVabK\nFlpVVbUl/fhega1++0DCaz4quONcK7Wh2mzY4n1Q0mQdvHgws0m/3uW7vg/RO6ZblqhmYHvs2Yu7\nvKwqMHcn75s0pmz11CgmjSTzmw4gNOgYUi/F9mLPqaqYuHdDUtKIWhAlnYkdOmBco2AU71XdAmYa\n/skpknRRGezw7UXsGQXhWX55/7R5EIJw7CtT19hvnTRVkkZXpB31fjx85IlaeAVhHxF3yO14u39X\nXfeZ6MIOuexIspIsa0y1YfE9i0xIGj2/Cac2wRjs6BTu4JFxVQ9F3yqjcE1jlFTVLO8obC/t35Pc\n83ZYnp9fREZUG5qYvtuznFst7CQQ83J677sT3WM8K2GMvC7U55oRryKsy1do78Vnka54DDiR5N7y\nFQjq3AcbatjHK2mIiDSme0lD1VMiIuJNSUNERLwpaYiIiLcqksZ+2H4QC4DjCpZZFzsMyELssNt1\nNf0UEZEKlE0aM4CvYtsxvwA71ET8lo9ZZb4A/BDb2/hC0sffERGRFiibNHbC3uLxPuAp7M3q4703\ns8q8gsmb038v4b0iItIiZZPGhvTe5WwJ/TetzyqzLpO9mB8B1ikZj4iI1Khs0jDYswdX/K5n8TKB\nUybvvSIi0iJlx566l57bXDILuCenzEynzMPYax6PYUfDfDB5NXOc6bHwISIijjGGsHMs21twdWyr\nqJ2Af2DvGvcJ4BZgLeBPGWXmAWeHf7+JvenLTvTfH1k9wkVkRE29HuGPAkcCVwO3Y+/aNQ94HXBu\nThmAY4E3YZvcvpb0m8yLiEgLaOwpEZHGTL0zDRERmUKUNERExJuShoiIeFPSmLruajoAkQ74TdMB\ntI2SxtT1haYDEGmxX9g/wY7Y/mQSUtIYbYeFfz+R8NryhHkiYv3Kmb6wsShaSEmjHZLuP/z9Cpa7\nKGzSd50zb3b49/pY2UcqWJ/IsP0YOMSj3AszXvtLwrx5zrSqqBxKGu3wL2f6T/ZP8KaCy0j6UUTD\ntSx15j1pE0lwK/B3Z/5WBdcno+2/PMv9d61R5LsLuDW/WHBbxos3OdPRb8LZNwanYwdeFUYvaTzU\ndAADesj5e54z/9+xcm/uf2sQABcwOVqwMz9YGD65FtguYb3uDbGeBD7qGe9U89WmA2jAA57l7s15\nve4z2I8Bd5Zchjte3tnA+fTvG30/j5E3aknj5gHf97oS6zwzYd4/E+Zl+UfK/LTrDm/ofRq8nt4R\ngz8Qe91A8NvwyTC6149aF/6jh7iu/xziurL49iTOKncHcHoFsWStfhmwLKPAE8CfneffdaY/gx0j\n75fh8z0gOA6C2fT/X10YPWMoupI0biW53tH1O9J3vnl+m18k1ZcS5s3CjqvlemNCuRvDv79MeA3s\n6L+ucGcc/DChrO+OetR26HFPVr/IIGunVLVhriuL774hYWc6MTTGcuxgpHM8lnOk5/qSQngCWDHl\nxX0g2Cg2LzozeQwCp2VUcJVTJuv/n180whTxmoRO6EjSCF4EnJpT6HiKHw1E9Zx5p9hZFvePHxM8\nTt9ZQvAD4FuxeTuE1Uh/SFn2n2PPs3b4bUoaTSam+D1a0sQPML6YUMZnu/hXfpFCkhpFNCErGfha\nDsFdEJzI4LUAnoJleJ8RBs+Nzfh9QqF5wP84z91k/qIikZFeRfeCgstphY4kDSC5GsgRXEjxpHFD\nuNN+vMB7FsWep+0gD8pYxoIC63MtzC8ysIDROAUfA66JzZsb/t3GmRc/E4y3JgO/o/7TgIu8IvMS\nPFrdsrwltQ66MWFekmibOZf+nfYdOeso6nrKH52723h05v6bhAO/JRAc7jx/iv47iyZtM0lSDmSC\n+L6kEzqUNAb6MT0t5/UiyWIikNjztKSRdOvaqOw3BlyXu/HNjr0Wndlchx2GPk0dZwG/SJnfwMXD\n4NfA/8Vmhjus4JaCC/PoyxJ8DLg/YX5AerWjrw+VfH+eRcDO2IYSrqUQ/NxzGdEZ2+HAGfTG7Lba\n+ziw5yBBOt4MPD+c3oPsI/V1U+YnJI2Bpdw0rk/VZ6ON6lDSGMjSnNfPzXnddQqwF/5H45c601W1\n83bWHZwfOzqKjppeFjanTeP7Q/lUgbiWM3l0/wxnHXW3nHlv7PlXUsr5xJH0vZbdqewT/r1kwPfH\nj6oHXU6aYyFwE0bGUXxq1dQZwMYQPBk+omrknYGjnPcvgeBKilXt/D323Pk+gqsg+F1GvGk79CqT\nhq+867GdMmpJw/csIFLkouODEFzhsY6oHtypJw12jJU5Gzi4wLrjy05S8TWN4CQmE8engO8xWc2T\nVP7l4YS744nWlfHjHthF9F7zOYXknu9gqzaf4zz/WEKZpJ3i24G3eMSSskMNooYMedfj4n4d/v1r\nbHn7F1yOK+nMoYKdZrAMgj8lzL8WgvsS5nv0qZgQb9VoKB+ze7Zedlm+7x+Fat8Jo5Y06hRtIHlJ\nI62cI3gIgm97rDNaRlj9ESzJOOKLt7RK8m7s7XYLCk6C4M3h+yNpzZRNwvQpxdeZK3aDmeBYZycd\n+d/wtWX2giyE17BOprdDl+ubzjKvhiBqopnVYqZMQwpXFFN0hnIR+VWsnoK9E2ZG12Ki7+mV1awr\nV1Jd/o/7ZwXxajPIrz1wXU/vAcuLgfc7z0e9JWEtupY00prGPiv86+5Q30CxjSI6G3gG9ppA/OJV\n2rLSkkZSh6Os/hsPk34am7aDcwSP5bduCb4OgVu/+kPgnQkF0+rin8iPo8df84vUIqoOvAR7v/oE\nQXxbCj+7ILpHfaylG0sSFhK1CIpf+zgh9tz37G77WCymxgvjR9nqpJ71xxsQAHyd6jt9JrXM8qnC\neQCCe+g9a8xazYvtgdbE8+shSLj+5M2370a8oYvONBo0njx7YoNzv5zlTP5YfS7IhssI/gbsTfqw\nAXkbQHRtIan++aPA81Letzmwa/Ky6trogkcgOAv4JHAf8LPwhZQGAl47MHcHeQCwPvUd0aXFeWF4\nRvEdCLZJLtNjEf0jmcZjTvqt7JQw7zzgpIT5Sc1B085Q8r7v/XJe9xD4Dv9xCQQtaQYchAddQd6w\n/j5jUcHA22Uwpc9QupY0inxZeS1fxum9p4R7kW0Z/Z3EotePprd1TtqZRoLgMSaH9oi/dr+ttuqd\nGftbk+AztklhEB05+6zPrSZI+QyChyH4e8LrVbmigmXcgU3klwKbZJRLOjpO6EgYHJKwUzH097kp\nYylwVoXLG1RV1XIR91pTies3wXn5ZYDi22Xe7yLtLKbqz6lRXUsaeeItI6KNIiGBBLvT0xs0V7Qj\nvIDesYgKJI3OSOts6LoU/6bDdTAVHfEtg2BpWBX0x4xyWTuM67C9i4sk96yztn+S2egASN9BDUM0\n1EnF23pwsjNddUuxJFX/VpNiPhbb6CVr2+qUriWNqAle2gic0Y/2QewF32ijuAX/U9Y0HtcVgOSe\nxWUNs050TeB9+cWC5fg3JW5zIvWNLaPPRfBTCFZPeXFfejsbRlUsGRe4g2UQHJgTTzzuMtt30ZEG\n5mW8JvZziVqUjYcHp/GWmmcMNaIKdS1pnIq91hCdOdyJbb4aieq4vxyrf3+ywClrxN1RvydsY57E\n/eGcBYHbV+CvwHcKrjcphiEmjeCR5GqXHtGF0aQesVU0i/Qx7B2W2wjg0/5vCy6zVX8TLi4Zx/kk\nNwh5gt7WbUV8Ba8DhZFT9EZkbuu8OWQP+bJ57Hl8X3sdHdWxpBEsC1tPROZCcJjz/IhY+WjH4nM/\n7PhOyN1R30GqniqS2DKCZ0KQNZyIr0F6rtcpPOMLbsEO2/GOjLJQvkes2zkvvsP8Nf3DhhSRlnyy\nzizPznitiL9QuEVaMJvUjmvB1wcLI1gMge/w7z9h8gyz62caPs3UHcHjk1WQwYm2SfaEo4CPhNMP\nJRx4xQ/8Bmj63g7Tmw6gWsEDKdvxR5Jm5i0s/NNkc7lo3YdiWyG1UBAfQiTpC7gAOwz18RkL+iTJ\nrY7AtuxaI1zfdmDcdeziFWYhid+52yS0zK1yz2DywuiewErY4cPzqqPi4r2lk25J+izKX4CPHwi9\n2pndtqRR5Le6FdWO5Xa1bfRhNiX5etXINLvt2JnGQMYoNiBhpKkvOaG9erAEgqqGY65CwTrwYDlw\nTs4yvzBYDMEyyg1d7rvj+2Z+kUzhGE3BNRAcE04/HH63bxzg4OQ0YINwep69mB+X2vehijGtDmPw\n6rAWCG4vud1EXh9b7uJYX5BoZIj499vJYdFhSiSNviNh7zdmvJYwPAJQzRgzZwJrV7Cclkkd/r2I\npPuIDElgsEPp3z3g+8ep9JahwVMQ+DbldO/58lMmx4cqs/6zISh7fSbNDTUttwbBBTkFourHfZx5\nq6ZXMbbfiFVPVSprGJArwTyD3h7P69HfQWyQ1S5n8vavbT2lzTvTuBlIa01URhODzbleGsYwYFLv\nuR5X1GkZr2V9Fp+mdxiXNlQpnY69FrY/tvd0WofXERIsALM1sPaANR+t0fUzjSp/AFkXwpPERk4N\nHqjodHcU7AZsn1uqV1MJssA2FDzKRK/kofO9udSXe58GJ5SMucz1mxTBKdih1NO0IbHVIJhP8lAt\nndL1pFGlh4DLnOd5O7G2ngUMQ86POngcgrJ1tnn3XhjRHUtpH2Si0UBpezI5tMywvIz+e8VAet8s\nGbKuVk/9HHtTl0GcSX8basImcvu6MwZcfpWOBeK3pmyDOnbYWaMHfwhbnfHTGtY7CsnHHQLH5PxL\nRc6s0vomVSE6+4nfMS+p/8I3IDiuxljqNArbV4+OJo1gPOe7SDvKXbHCKqQhJJXgcuDy+tdTWNZF\nvKp+JNFyfgPBT7D9A+pYT1eM2P8bPAoEYAa99bE0pKNJI9PWpLa/LpQwVD2VbH3SW49VaVg7yUHW\n07bvvsh3QoMiAAAIkElEQVT/UOd95uvShYRZw7WfdhrBpFFZf4a27Ria8DX6BloL4p3K4nx/4EuA\nmc7z+IXevAH5qtiRzKX//tijbAbF74ki+Xah/x4akS4kvEJ0ITxdXtL4N/3Dp4+YYMkAY3Zl+Zoz\nfXXvSz2d046E4LYK15siOBCCL+WXa4UiHSpTjnqDf8XGweqKlu94g1+SOOJyEIRN6EfKCJ5pVCbv\nLnhLsUNASK+s+4m8B8y22NtufgbbUe6P9I/46Y5VlfY9tHxH0qTgsfBzFqlc2TONHbADyC3EjpSZ\n9gPPKrcS8AP6uuM3TtVTg/G9ten8sEVM1ue8E+nbxa3Fwuq8rOq6pKPcm/vndZYOEFqkbNL4NvAW\nYAts/fRrCpbbCHu0uT/t2zCUNAaT9z0WuOYU3EDyjZGmA58rEFPXPYveXt2uM+i9KVhZR4aPYdHv\nbArZlN7how/A9oEYpNzZpB9RpuyEjAHzWZ9AB2M2jY2mKrlMQv+XvjJb9X6uZgaYA8JpEz7eXk98\nVTHTwRS4p4akMwuzf2fGgPFMiuZo/WZ71PJZlLmmsSG9TS/vJ3n4bt9ybfNIfhHpFQxw35LgMTrX\nByNYBnyq6SimkJZvD1OLT9L4OXYwPpfBnsLGW2KkXRj2LZdmjjM9Hj5qFjyATp3rcAfwgaaDkM6Y\nC3y/6SA6Yix81MonaeyVMv/Z9Lazn8nkzWVc93iWyzqamJPxmnRK8CS2MYSIh9x7pbu+RfINkKaK\ncXoPqE+oYyVlLoTfDayJvbgNdpCxK8LpVYHNPMpFAnRULyKlBA9CcFbTUUi2HbFNae/Ajvcf7fjH\ngEUe5Z6BveHKEux9vL+VsI6GLoTL8E1cCD+06UhkWPIuhEsJU/ZzVdKYMpQ0ph5zh5JGbWr5XDWM\niLSRdiIiLdX1pNHp2yaKiHRNl8ee2gZ7jURERIakw0kjuKXpCEREppquV0+JiMgQKWmIiIg3JQ1p\nI7WemjrUqbdjlDRERMSbkoa0ySpNByAi2ZQ0pEWCJ5qOQESyKWmIiIg3JQ0REfGmpCFtpNZTIi2l\npCEiIt46PIyIiIyA/wDWaToI8aekISINChY0HYEUo+opERHxpqQhIiLelDRERMSbkoa0kZrcirSU\nkoaIiHhT0hAREW9KGiIi4k1JQ0REvClpiIiINyUNaSO1nhJpKSUNERHxpqQhIiLelDRERMSbkoaI\niHhT0pA2+n3TAYhId6kljYhIcbXsO3WmISIi3pQ0RETEm5KGiIh4K5M0dgB+CywEvgIEBcsdBCwI\nH9cAm5WIRUREWm4BsGU4/b/AawuWeymwZjj9ZuCClPd3/UL4WNMBlDTWdAAljTUdQEljTQdQwljT\nAZQ01nQAJbXqQvimwL+YbBr5PWC/guWuAx4Op28D1h8wlrYbazqAksaaDqCksaYDKGms6QBKGGs6\ngJLGmg6gjQZNGhsC9znP7yd5p+9b7iDgigFjERGRIZme8/rPgfVi8wxwJPBUbP5KKcvIK/cfwN7A\ny3JiERGRjno2cL3z/NXAuQOU2wuYjz0jSXMXNlHpoYceeujh/7iLllkIbBFOfxc4OJxeld6WUGnl\nXoVtVfXMesMUEZE22BG7078DOI3JprRjwCKPclcDf8ZeJI8eG9QdtIiIiIiICPthr3ksAI5rOJbt\ngFuc5+sCl2Gr3y4F1nZe+wQ25vnAK535aR0dV8VW3S0EfglsUnHsK2Nbp90VriP6LLv0P3w7jOcO\nYC6wWsfiBzg2jIeOxT6OrT2IagQ+3rH4VwNOB+4E/ojtH9aV+F9Eb23MndhamnU6Ev9QzQAWA7OA\nadhe49s2FMsXsc2Fb3XmfRM4PJw+AvslAOwGzMN+Ietjv4hp4WtpHR0/BXw2nN4b+HG14bMysLsz\nfTN2Y+zS/zDmTH8HOIRuxb8zcBOT21CXYr8ae9Dk6lL8ZwFzYvO6FL/rcOBU7P/UxfhrtTu9vcTf\nj82gTdmYyaNEsAntaeH0mtgjAIATgaOcchdgdxibYncakQOAM8PpceCFzmv3VBFwhrnYjWMx3fsf\nZgCXAzvRnfjXA36Nvb4XbUOL6UbsYJPG9rF5i+lG/OtjOw/HhzlaTDfid03Hnm1sSIPxt3nAwnjH\nwCU022s8vtGtC/wznH4Ye7oI9mL+EqdcFPcGpHd0jP+vjzjLq9rTgZdgd2Jd+x8Ow27QNwM30I34\nA+AcbNWUu/wuxB4x2AONBdij3Gl0J/6twvivCuP/NvbAoyvxuw4GfgH8jQbjb3PSMPh3IGxCVmxp\nrw3yniqtAvwAWyf98IDxNPk/fBNbd/t0bPVUF+I/BrgWW73qHnh0IfbIvtgj1W2xTeSPHjCWJuKf\nhb0OtjfwfODvwAkDxtLktj8Ne+BxcolYKom/zUnjXmCm83wW9VfbFPEw9ogF7Onhg+F0PO6Z2LjT\n5kfvmeW8tha9RwtVWBl7tHgxcF44r2v/A9iN+wpsdUkX4t8EeBu2WuEK4DnYBPJQB2KPPBH+/Tdw\nEbbTbhc+e8K4HgOeBJYDPwKeR7c+f4DZwI1Mdmdo7PNvc9K4HlsHPBNbl/d64MpGI+p1FfCmcHo2\nk2NnXQkciP1sN8BeQLweuBv75W7hvOdK5z2zw+l9sHWw8cxfxmrAT7A7q5Od+V35H9YOlwmwIvAa\n4Dcdif/92J3UlsAe2Lrn3bDXCdoeO9iDjbFwekXsxdNr6cZnTxjrbthrkmBbZP6a7nz+hLEcB/yn\nM68rn//Q7Y/9BxYCxzcYx4nY5raPYevSd8Ve3PwZNrbLsHWMkU9i609vp3f037SOjqsC5zPZ5O3Z\nFcc/BjxOb9O9z3bof1gb+yNZFK73lHB+V+KPbMJk66muxL4Kth49anL7+Y7FDzZZ3xzGcyY2+XUp\n/gOBC2PzuhS/iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlPH/rMRP+gh+FsYAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f22b9a62510>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the volatility\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(EURUSD_Return, '-')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment