Last active
November 28, 2023 20:46
-
-
Save cs-fedy/9f1c9cb861b8359fa126ac36f8a97efe to your computer and use it in GitHub Desktop.
hash table linear probing implementation Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# in state list: 1 means occupied, 0 means empty and -1 means deleted | |
class Node: | |
def __init__(self, key): | |
self.key = key | |
self.next = None | |
class HashTable: | |
def __init__(self, size=100, load_factor=0.75): | |
self.items_count = 0 | |
self.load_factor = load_factor | |
self.table = [None] * size | |
self.state = [0] * size | |
def hash_function(self, key, size=None): | |
if not size: size = len(self.table) | |
return key % size | |
def __rehash(self): | |
new_table = [None] * len(self.table) * 2 | |
new_state = [0] * len(self.table) * 2 | |
for bucket in self.table: | |
if not bucket: continue | |
self.__insert(bucket, new_table, new_state) | |
return new_table, new_state | |
def __insert(self, key, table=None, state=None): | |
if not table: table = self.table | |
if not state: state = self.state | |
index = self.hash_function(key) | |
while self.state[index] == 1: | |
index = (index + 1) % len(self.table) | |
table[index], state[index] = key, 1 | |
def insert(self, key): | |
self.items_count += 1 | |
load_factor = self.items_count / len(self.table) | |
if load_factor > self.load_factor: | |
self.table, self.state = self.__rehash() | |
self.load_factor = load_factor | |
self.__insert(key) | |
def search(self, key): | |
index = self.hash_function(key) | |
while (self.table[index] != key or\ | |
self.state[index] == -1) and\ | |
self.state[index] == 1: | |
index = (index + 1) % len(self.table) | |
if self.table[index] == key: | |
return index | |
return -1 | |
def delete(self, key): | |
index = self.search(key) | |
if index > -1: | |
self.state[index] = -1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment