-
-
Save csukuangfj/841c200b88a3d1ad7ab6e8fe5ac0a70d to your computer and use it in GitHub Desktop.
Natural Cubic Spline Interpolation in C
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** Numerical Analysis 9th ed - Burden, Faires (Ch. 3 Natural Cubic Spline, Pg. 149) */ | |
#include <stdio.h> | |
int main() { | |
/** Step 0 */ | |
int n, i, j; | |
scanf("%d", &n); | |
n--; | |
float x[n + 1], a[n + 1], h[n], A[n], l[n + 1], | |
u[n + 1], z[n + 1], c[n + 1], b[n], d[n]; | |
for (i = 0; i < n + 1; ++i) scanf("%f", &x[i]); | |
for (i = 0; i < n + 1; ++i) scanf("%f", &a[i]); | |
/** Step 1 */ | |
for (i = 0; i <= n - 1; ++i) h[i] = x[i + 1] - x[i]; | |
/** Step 2 */ | |
for (i = 1; i <= n - 1; ++i) | |
A[i] = 3 * (a[i + 1] - a[i]) / h[i] - 3 * (a[i] - a[i - 1]) / h[i - 1]; | |
/** Step 3 */ | |
l[0] = 1; | |
u[0] = 0; | |
z[0] = 0; | |
/** Step 4 */ | |
for (i = 1; i <= n - 1; ++i) { | |
l[i] = 2 * (x[i + 1] - x[i-1]) - h[i - 1] * u[i - 1]; | |
u[i] = h[i] / l[i]; | |
z[i] = (A[i] - h[i - 1] * z[i - 1]) / l[i]; | |
} | |
/** Step 5 */ | |
l[n] = 1; | |
z[n] = 0; | |
c[n] = 0; | |
/** Step 6 */ | |
for (j = n - 1; j >= 0; --j) { | |
c[j] = z[j] - u[j] * c[j + 1]; | |
b[j] = (a[j + 1] - a[j]) / h[j] - h[j] * (c[j + 1] + 2 * c[j]) / 3; | |
d[j] = (c[j + 1] - c[j]) / (3 * h[j]); | |
} | |
/** Step 7 */ | |
printf("%2s %8s %8s %8s %8s\n", "i", "ai", "bi", "ci", "di"); | |
for (i = 0; i < n; ++i) | |
printf("%2d %8.2f %8.2f %8.2f %8.2f\n", i, a[i], b[i], c[i], d[i]); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment