Last active
August 22, 2022 16:48
-
-
Save csukuangfj/c68697cd144c8f063cc7ec4fd885fd6f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang) | |
from snowfall.training.ctc_graph import build_ctc_topo2 | |
from speechbrain.pretrained import EncoderDecoderASR | |
import k2 | |
import torch | |
def load_model(): | |
model = EncoderDecoderASR.from_hparams( | |
source="speechbrain/asr-transformer-transformerlm-librispeech", | |
savedir="pretrained_models/asr-transformer-transformerlm-librispeech", | |
# run_opts={'device': 'cuda:0'}, | |
) | |
return model | |
@torch.no_grad() | |
def main(): | |
model = load_model() | |
device = model.device | |
# See https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech/blob/main/example.wav | |
sound_file = './example.wav' | |
wav = model.load_audio(sound_file) | |
# wav is a 1-d tensor, e.g., [52173] | |
wavs = wav.unsqueeze(0).float().to(device) | |
# wavs is a 2-d tensor, e.g., [1, 52173] | |
wav_lens = torch.tensor([1.0]) | |
wav_lens = wav_lens.to(device) | |
encoder_out = model.modules.encoder(wavs, wav_lens) | |
# encoder_out.shape [N, T, C], e.g., [1, 82, 768] | |
logits = model.hparams.ctc_lin(encoder_out) | |
# logits.shape [N, T, C], e.g., [1, 82, 5000] | |
log_probs = model.hparams.log_softmax(logits) | |
# log_probs.shape [N, T, C], e.g., [1, 82, 5000] | |
vocab_size = model.tokenizer.vocab_size() | |
ctc_topo = build_ctc_topo2(list(range(vocab_size))) | |
ctc_topo = k2.create_fsa_vec([ctc_topo]).to(device) | |
supervision_segments = torch.tensor([[0, 0, log_probs.size(1)]], | |
dtype=torch.int32) | |
dense_fsa_vec = k2.DenseFsaVec(log_probs, supervision_segments) | |
lattices = k2.intersect_dense_pruned(ctc_topo, dense_fsa_vec, 20.0, 8, 30, | |
10000) | |
best_path = k2.shortest_path(lattices, True) | |
aux_labels = best_path[0].aux_labels | |
aux_labels = aux_labels[aux_labels.nonzero().squeeze()] | |
# The last entry is -1, so remove it | |
aux_labels = aux_labels[:-1] | |
hyp = model.tokenizer.decode(aux_labels.tolist()) | |
print(hyp) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment