Created
February 23, 2018 01:10
-
-
Save cswiercz/a975f80f9d09cb224960fd6bd15abd86 to your computer and use it in GitHub Desktop.
mnuk_conditions() Fraction Field Timing Test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# In[1]: | |
R = QQbar['x,y'] | |
x,y = R.gens() | |
g1 = x^4 + x^2*y^2 + (-2)*x^2*y - x*y^2 + y^2 | |
g2 = -x^7 + 2*x^3*y + y^3 | |
g = g1 | |
d = g.total_degree() | |
# | |
# construct generalized adjoint polynomial | |
# | |
cvars = ['c_%d_%d'%(i,j) for i in range(d-2) for j in range(d-2)] | |
vars = list(R.variable_names()) + cvars | |
C = PolynomialRing(QQbar, cvars) | |
S = PolynomialRing(C, [x,y]) | |
T = PolynomialRing(QQbar, vars) | |
c = S.base_ring().gens() | |
x,y = S(x),S(y) | |
P = sum(c[j+(d-2)*i] * x**i * y**j | |
for i in range(d-2) for j in range(d-2) | |
if i+j <= d-3) | |
# | |
# construct intergral basis element | |
# | |
b = (x^2*y - x*y + y)/x^2 | |
print(g) | |
print(P) | |
print(b) | |
# In[2]: | |
generic_adjoint = P | |
R = g.parent() | |
S = generic_adjoint.parent() | |
B = S.base_ring() | |
c = B.gens() | |
T = QQbar[R.variable_names() + B.variable_names()] | |
print(S) | |
print(B) | |
print(T) | |
# In[3]: | |
B = PolynomialRing(QQbar, [R.variable_names()[0]] + list(B.variable_names())) | |
print(B) | |
# In[4]: | |
def method1(): | |
Q = B.fraction_field()[R.variable_names()[1]] | |
u, v = map(Q, R.gens()) | |
numer = b.numerator() | |
denom = b.denominator() | |
expr = numer(u,v) * generic_adjoint(u,v) | |
modulus = g(u,v) | |
r_reduced_mod_g = expr % modulus | |
return r_reduced_mod_g | |
def method2(): | |
Q = B[R.variable_names()[1]] | |
u, v = map(Q, R.gens()) | |
numer = b.numerator() | |
denom = b.denominator() | |
expr = numer(u,v) * generic_adjoint(u,v) | |
modulus = g(u,v) | |
r_reduced_mod_g = expr.change_ring(B.fraction_field()) % modulus | |
return r_reduced_mod_g | |
timeit('method1()') | |
timeit('method2()') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment