Created
January 18, 2024 19:45
-
-
Save ctesta01/93a27ebf887c6371f7bfebb8551f35c3 to your computer and use it in GitHub Desktop.
Intro to functional programming
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Functional Programming | |
# ID529 | |
# Topics to cover | |
# | |
# - sapply, apply family | |
# - purrr::map | |
# - summarize | |
# - stratified models | |
# | |
# dependencies ------------------------------------------------------------ | |
library(ID529data) | |
# simple example ---------------------------------------------------------- | |
square <- function(x) { | |
x^2 | |
} | |
c(square(1), square(2), square(3), square(4)) | |
square(c(1,2,3,4)) | |
sapply(c(1,2,3,4), square) | |
# modeling example with lm and gtsummary ---------------------------------- | |
predictor_variables <- c( | |
"age + sex_gender", | |
"race_ethnicity + poverty_ratio", | |
"days_dental_floss + PFAS_total", | |
"total_energy") | |
formulas <- purrr::map_chr(1:4, | |
~ paste0("mean_BP ~ ", | |
paste( | |
predictor_variables[1:.], | |
collapse = " + ") | |
)) | |
formulas <- purrr::map(formulas, formula) | |
models <- purrr::map(formulas, | |
~ lm(., data = nhanes_id529)) | |
summary_tables <- purrr::map(models, gtsummary::tbl_regression) | |
gtsummary::tbl_merge(summary_tables) | |
# dplyr::summarize -------------------------------------------------------- | |
nhanes_id529 |> | |
group_by(race_ethnicity, sex_gender, | |
age_cat = cut(age, seq(10, 100, by = 10))) |> | |
summarize( | |
mean_bp = mean(mean_BP, na.rm=TRUE), | |
sd_BP = sd(mean_BP, na.rm=TRUE), | |
mean_PFAS_total = mean(PFAS_total, na.rm=TRUE), | |
sd_PFAS_total = sd(PFAS_total, na.rm=TRUE)) |> | |
View() | |
nhanes_id529 |> | |
group_by(race_ethnicity, sex_gender, | |
age_cat = cut(age, seq(10, 100, by = 10))) |> | |
summarize( | |
across( | |
.cols = c(mean_BP, PFAS_total, starts_with("PF")), | |
.fns = list( | |
mean = ~ mean(., na.rm=TRUE), | |
sd = ~ sd(., na.rm=TRUE), | |
count_NAs = ~ sum(is.na(.)) | |
))) |> | |
View() | |
# stratified models ------------------------------------------------------- | |
nested_data <- nhanes_id529 |> | |
nest_by(race_ethnicity) | |
# create linear models for each of the | |
# racial/ethnic groups | |
nested_data <- nested_data |> mutate( | |
model = list( | |
lm(mean_BP ~ age, data = data) | |
)) | |
nested_data <- nested_data |> mutate( | |
coef_table = list( | |
broom::tidy(model))) | |
nested_data |> | |
unnest(cols = c(coef_table)) |> | |
View() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment