Skip to content

Instantly share code, notes, and snippets.

@ctralie
Created January 9, 2019 22:31
Show Gist options
  • Save ctralie/64b0f1eab6c57a79bb8d9970d1a96d22 to your computer and use it in GitHub Desktop.
Save ctralie/64b0f1eab6c57a79bb8d9970d1a96d22 to your computer and use it in GitHub Desktop.
The connection Laplacian and its use for synchronizing a set of vectors on an NxN grid
"""
Programmer: Chris Tralie ([email protected])
Purpose: To implement the connection Laplacian and show its use
for synchronizing a set of vectors on an NxN grid
"""
import numpy as np
import numpy.linalg as linalg
from scipy import sparse
from scipy.sparse.linalg import lsqr, cg, eigsh
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
def getConnectionLaplacian(ws, Os, N, k, weighted=True):
"""
Given a set of weights and corresponding orientation matrices,
return k eigenvectors of the connection Laplacian.
Parameters
----------
ws: ndarray(M, 3)
An array of weights for each included edge
Os: M-element list of (ndarray(d, d))
The corresponding orthogonal transformation matrices
N: int
Number of vertices in the graph
k: int
Number of eigenvectors to compute
weighted: boolean
Whether to normalize by the degree
Returns
-------
w: ndarray(k)
Array of k eigenvalues
v: ndarray(N*d, k)
Array of the corresponding eigenvectors
"""
d = Os[0].shape[0]
W = sparse.coo_matrix((ws[:, 2], (ws[:, 0], ws[:, 1])), shape=(N, N)).tocsr()
## Step 1: Create D^-1 matrix
deg = np.array(W.sum(1)).flatten()
deg[deg == 0] = 1
## Step 2: Create S matrix
I = []
J = []
V = []
Jsoff, Isoff = np.meshgrid(np.arange(d), np.arange(d))
Jsoff = Jsoff.flatten()
Isoff = Isoff.flatten()
for idx in range(ws.shape[0]):
[i, j, wij] = ws[idx, :]
i, j = int(i), int(j)
wijOij = wij*Os[idx]
if weighted:
wijOij /= deg[i]
wijOij = (wijOij.flatten()).tolist()
I.append((i*d + Isoff).tolist())
J.append((j*d + Jsoff).tolist())
V.append(wijOij)
I, J, V = np.array(I).flatten(), np.array(J).flatten(), np.array(V).flatten()
S = sparse.coo_matrix((V, (I, J)), shape=(N*d, N*d)).tocsr()
return eigsh(S, which='LA', k=k)
def testConnectionLaplacianSquareGrid(N, seed=0, torus = False):
"""
Randomly rotate vectors on an NxN grid and use the connection
Laplacian to come up with a consistent orientation for all of them.
Animate the results and save to frames.
----------
N: int
Dimension of grid
seed: int
Seed for random initialization of vector angles
torus: boolean
Whether this grid is thought of as on the torus or not
"""
np.random.seed(seed)
thetas = 2*np.pi*np.random.rand(N, N)
ws = []
Os = []
for i in range(N):
for j in range(N):
idxi = i*N+j
for [di, dj] in [[-1, 0], [1, 0], [0, 1], [0, -1]]:
i2 = i+di
j2 = j+dj
if torus:
i2, j2 = i2%N, j2%N
else:
if i2 < 0 or j2 < 0 or i2 >= N or j2 >= N:
continue
idxj = i2*N+j2
ws.append([idxi, idxj, 1.0])
# Oij moves vectors from j to i
theta = thetas[i2, j2] - thetas[i, j]
c = np.cos(theta)
s = np.sin(theta)
Oij = np.array([[c, -s], [s, c]])
Os.append(Oij)
ws = np.array(ws)
w, v = getConnectionLaplacian(ws, Os, N**2, 2)
thetasnew = np.zeros_like(thetas)
for idx in range(N*N):
i, j = np.unravel_index(idx, (N, N))
vidx = v[idx*2:(idx+1)*2, 0]
# Bring into world coordinates
c = np.cos(thetas[i, j])
s = np.sin(thetas[i, j])
Oij = np.array([[c, -s], [s, c]])
vidx = Oij.dot(vidx)
thetasnew[i, j] = np.arctan2(vidx[1], vidx[0])
# Animate the results
plt.figure(figsize=(8, 8))
for fidx, t in enumerate(np.linspace(0, 1, 100)):
plt.clf()
ax = plt.gca()
for i in range(N):
for j in range(N):
plt.scatter([j+0.5], [i+0.5], 20, 'k')
theta = (1-t)*thetas[i, j] + t*thetasnew[i, j]
v = 0.5*np.array([np.cos(theta), np.sin(theta)])
ax.arrow(j+0.5, i+0.5, v[0], v[1], head_width=0.1, head_length=0.2)
plt.scatter([-0.2, N, -0.2, N], [-0.2, -0.2, N, N], alpha=0)
plt.axis('equal')
plt.axis('off')
plt.savefig("%i.png"%fidx, bbox_inches='tight')
for fidx in range(100, 120):
plt.savefig("%i.png"%fidx, bbox_inches='tight')
if __name__ == '__main__':
testConnectionLaplacianSquareGrid(10)
@ctralie
Copy link
Author

ctralie commented Jan 9, 2019

connectionsquare

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment