Created
January 9, 2019 22:31
-
-
Save ctralie/64b0f1eab6c57a79bb8d9970d1a96d22 to your computer and use it in GitHub Desktop.
The connection Laplacian and its use for synchronizing a set of vectors on an NxN grid
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Programmer: Chris Tralie ([email protected]) | |
Purpose: To implement the connection Laplacian and show its use | |
for synchronizing a set of vectors on an NxN grid | |
""" | |
import numpy as np | |
import numpy.linalg as linalg | |
from scipy import sparse | |
from scipy.sparse.linalg import lsqr, cg, eigsh | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from matplotlib.patches import FancyArrowPatch | |
from mpl_toolkits.mplot3d import proj3d | |
def getConnectionLaplacian(ws, Os, N, k, weighted=True): | |
""" | |
Given a set of weights and corresponding orientation matrices, | |
return k eigenvectors of the connection Laplacian. | |
Parameters | |
---------- | |
ws: ndarray(M, 3) | |
An array of weights for each included edge | |
Os: M-element list of (ndarray(d, d)) | |
The corresponding orthogonal transformation matrices | |
N: int | |
Number of vertices in the graph | |
k: int | |
Number of eigenvectors to compute | |
weighted: boolean | |
Whether to normalize by the degree | |
Returns | |
------- | |
w: ndarray(k) | |
Array of k eigenvalues | |
v: ndarray(N*d, k) | |
Array of the corresponding eigenvectors | |
""" | |
d = Os[0].shape[0] | |
W = sparse.coo_matrix((ws[:, 2], (ws[:, 0], ws[:, 1])), shape=(N, N)).tocsr() | |
## Step 1: Create D^-1 matrix | |
deg = np.array(W.sum(1)).flatten() | |
deg[deg == 0] = 1 | |
## Step 2: Create S matrix | |
I = [] | |
J = [] | |
V = [] | |
Jsoff, Isoff = np.meshgrid(np.arange(d), np.arange(d)) | |
Jsoff = Jsoff.flatten() | |
Isoff = Isoff.flatten() | |
for idx in range(ws.shape[0]): | |
[i, j, wij] = ws[idx, :] | |
i, j = int(i), int(j) | |
wijOij = wij*Os[idx] | |
if weighted: | |
wijOij /= deg[i] | |
wijOij = (wijOij.flatten()).tolist() | |
I.append((i*d + Isoff).tolist()) | |
J.append((j*d + Jsoff).tolist()) | |
V.append(wijOij) | |
I, J, V = np.array(I).flatten(), np.array(J).flatten(), np.array(V).flatten() | |
S = sparse.coo_matrix((V, (I, J)), shape=(N*d, N*d)).tocsr() | |
return eigsh(S, which='LA', k=k) | |
def testConnectionLaplacianSquareGrid(N, seed=0, torus = False): | |
""" | |
Randomly rotate vectors on an NxN grid and use the connection | |
Laplacian to come up with a consistent orientation for all of them. | |
Animate the results and save to frames. | |
---------- | |
N: int | |
Dimension of grid | |
seed: int | |
Seed for random initialization of vector angles | |
torus: boolean | |
Whether this grid is thought of as on the torus or not | |
""" | |
np.random.seed(seed) | |
thetas = 2*np.pi*np.random.rand(N, N) | |
ws = [] | |
Os = [] | |
for i in range(N): | |
for j in range(N): | |
idxi = i*N+j | |
for [di, dj] in [[-1, 0], [1, 0], [0, 1], [0, -1]]: | |
i2 = i+di | |
j2 = j+dj | |
if torus: | |
i2, j2 = i2%N, j2%N | |
else: | |
if i2 < 0 or j2 < 0 or i2 >= N or j2 >= N: | |
continue | |
idxj = i2*N+j2 | |
ws.append([idxi, idxj, 1.0]) | |
# Oij moves vectors from j to i | |
theta = thetas[i2, j2] - thetas[i, j] | |
c = np.cos(theta) | |
s = np.sin(theta) | |
Oij = np.array([[c, -s], [s, c]]) | |
Os.append(Oij) | |
ws = np.array(ws) | |
w, v = getConnectionLaplacian(ws, Os, N**2, 2) | |
thetasnew = np.zeros_like(thetas) | |
for idx in range(N*N): | |
i, j = np.unravel_index(idx, (N, N)) | |
vidx = v[idx*2:(idx+1)*2, 0] | |
# Bring into world coordinates | |
c = np.cos(thetas[i, j]) | |
s = np.sin(thetas[i, j]) | |
Oij = np.array([[c, -s], [s, c]]) | |
vidx = Oij.dot(vidx) | |
thetasnew[i, j] = np.arctan2(vidx[1], vidx[0]) | |
# Animate the results | |
plt.figure(figsize=(8, 8)) | |
for fidx, t in enumerate(np.linspace(0, 1, 100)): | |
plt.clf() | |
ax = plt.gca() | |
for i in range(N): | |
for j in range(N): | |
plt.scatter([j+0.5], [i+0.5], 20, 'k') | |
theta = (1-t)*thetas[i, j] + t*thetasnew[i, j] | |
v = 0.5*np.array([np.cos(theta), np.sin(theta)]) | |
ax.arrow(j+0.5, i+0.5, v[0], v[1], head_width=0.1, head_length=0.2) | |
plt.scatter([-0.2, N, -0.2, N], [-0.2, -0.2, N, N], alpha=0) | |
plt.axis('equal') | |
plt.axis('off') | |
plt.savefig("%i.png"%fidx, bbox_inches='tight') | |
for fidx in range(100, 120): | |
plt.savefig("%i.png"%fidx, bbox_inches='tight') | |
if __name__ == '__main__': | |
testConnectionLaplacianSquareGrid(10) |
Author
ctralie
commented
Jan 9, 2019
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment