Created
November 9, 2019 00:16
-
-
Save ctralie/8d2cf8f6d0a7be837367b0187b1fab52 to your computer and use it in GitHub Desktop.
Fast Euclidean Distance Matrix Computaiton
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
def getEDM(X): | |
""" | |
Compute an all pairs distance matrix using broadcasting | |
and matrix multiplications to speed up computations | |
Parameters | |
---------- | |
X: ndarray(N, d) | |
N points in d dimensions | |
Returns: ndarray(N, N) | |
All pairs distances | |
""" | |
dotX = np.reshape(np.sum(X*X, 1), (X.shape[0], 1)) | |
D = (dotX + dotX.T) - 2*(np.dot(X, X.T)) | |
D[D < 0] = 0 | |
D = np.sqrt(D) | |
return D | |
if __name__ == '__main__': | |
# Create a p-q torus knot in 3D with N samples | |
N = 500 | |
p = 3 | |
q = 5 | |
t = np.linspace(0, 2*np.pi, N+1)[0:N] | |
R = 3 | |
r = 1 | |
X = np.zeros((N, 3)) | |
X[:, 0] = (R + r*np.cos(p*t))*np.cos(q*t) | |
X[:, 1] = (R + r*np.cos(p*t))*np.sin(q*t) | |
X[:, 2] = r*np.sin(p*t) | |
# Compute and plot the SSM | |
D = getEDM(X) | |
fig = plt.figure(figsize=(12, 6)) | |
ax = fig.add_subplot(121, projection='3d') | |
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=np.arange(N)) | |
plt.title("%i Samples of The %i-%i Torus Knot"%(N, p, q)) | |
plt.subplot(122) | |
plt.imshow(D, cmap='magma_r') | |
plt.colorbar() | |
plt.scatter(np.zeros(N), np.arange(N), c=np.arange(N)) | |
plt.scatter(np.arange(N), np.zeros(N), c=np.arange(N)) | |
plt.xlabel("Sample Number") | |
plt.ylabel("Sample Number") | |
plt.title("Euclidean Distance Matrix") | |
plt.show() |
Author
ctralie
commented
Nov 9, 2019
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment