- Sinh viên đi học đúng giờ, có mặt trước khi buổi thực hành bắt đầu.
- Chuẩn bị bài lab trước ở nhà.
⚠️ Lưu ý: Sinh viên không chuẩn bị sẽ bị mời ra khỏi lớp.
- Nghiêm túc làm việc trong giờ thực hành.
- Không sao chép hoặc lấy bài của bạn khác.
⚠️ Lưu ý: Sinh viên không chuẩn bị sẽ bị mời ra khỏi lớp.
This guide outlines how to call the necessary API to retrieve a list of camera streams, including their main and sub-stream URLs.
- Retrieve the base RTSP URL.
- Define the query parameters (
token
andid
).- Append the query parameters to the RTSP URL.
- Final RTSP URL with the required query parameters.
#!/bin/bash | |
### steps #### | |
# verify the system has a cuda-capable gpu | |
# download and install the nvidia cuda toolkit and cudnn | |
# setup environmental variables | |
# verify the installation | |
### | |
### to verify your gpu is cuda enable check |
I've been interested in computer vision for a long time, but I haven't had any free time to make any progress until this holiday season. Over Christmas and the New Years I experimented with various methodologies in OpenCV to detect road signs and other objects of interest to OpenStreetMap. After some failed experiments with thresholding and feature detection, the excellent /r/computervision suggested using the dlib C++ module because it has more consistently-good documentation and the pre-built tools are faster.
After a day or two figuring out how to compile the examples, I finally made some progress:
dlib
from Github to your local machine:#!/bin/bash --debugger | |
export MAKEFLAGS="-j 1" | |
set -e | |
BRANCH="1.10" | |
if grep -q BCM270 /proc/cpuinfo; then | |
echo "RPI BUILD!" | |
RPI="1" | |
fi |